Cisco Nexus 5000 and 2000 Hardware Architecture

BRKARC-3452
Session Goal

- This session presents an in-depth study of the architecture of the Nexus 5000 Data Center switch and the Nexus 2000 Fabric Extender. Topics include internal architecture of the Nexus 5000 and 2000, the architecture of VN-Link port extension as implemented in the Nexus 2000, Unified I/O, and 10G cut-thru Ethernet.

- Related sessions:
 - BRKARC-3470 - Cisco Nexus 7000 Switch Architecture
 - BRKARC-3471 - Cisco NXOS Software Architecture
 - BRKDCT-2079 - The Evolution of Data Center Networks
 - BRKDCT-2023 Evolution of the Data Centre Access Architecture
 - BRKSAN-2047 – FCoE Design, Operations and Management Best Practices
Agenda

- Data Center Virtualized Access—Nexus 5000 and Nexus 2000
 - Nexus 5000 (N5K)
 - Hardware Architecture
 - Day in the Life of a Packet
 - Nexus 2000 (N2K)
 - Virtualized/Remote Line Card
 - N2K Hardware Architecture
 - Day in the Life of a Packet
- Virtualized Access Switch (N5K + N2K)
 - Port Channel and N2K Connectivity
 - Multicast
 - QoS
- Data Center Switch- Nexus 5000 and Nexus 2000
Nexus 5000 and 2000
Virtualized Data Center Access

Nexus 5010
20 Fixed Ports 10G/FCoE/IEEE DCB
Line-rate, Non-blocking 10G
1 Expansion Module Slot
Redundant Fans & Power Supplies

Nexus 5020
40 Fixed Ports 10G/FCoE/IEEE DCB
Line-rate, Non-blocking 10G
2 Expansion Module Slots
Redundant Fans & Power Supplies

Nexus 2000 Fabric Extender
48 Fixed Ports 1G Ethernet (1000 BASE-T)
4 Fixed Port 10G Uplink
Distributed Virtual Line Card

Ethernet
6 Ports 10G/FCoE/IEEE DCB

Ethernet + Fibre Channel
4 Ports 10G/FCoE/IEEE DCB
4 Ports 1/2/4G Fibre Channel

Fibre Channel
8 Ports 1/2/4G Fibre Channel

8G Fibre Channel
6 Ports 2/4/8G Fibre Channel
Nexus 5000 and 2000
Virtualized Data Center Access

- Nexus 2000 and Fabric Extender Technology
- Centralized Control and Mgmt with Distributed Forwarding
- VN-Tag Enabled Port Extension
- Low Latency Cut-Thru Switching

- Native Fibre Channel supporting full SAN Fabric Capabilities
- FCoE enabled - T11 FC-BB-5
- Data Center Bridging Exchange Protocol (DCBX)
- Ingress Queuing, Virtual Output Queues and Lossless Fabric

- Virtual Port Channel (VPC)
- Layer 2 Multipath (TRILL & ETRILL)
- Priority Flow Control (PFC)
- IEEE 802.1Qbb
- Bandwidth Management IEEE 802.1Qaz

- VN-Tag Port Extension+ SR-IOV
- Network Interface Virtualization (NIV)
- Port Profiles
Nexus 5000 and 2000 Architecture
Switch Morphology

- What’s in a switch?
- Lookup/forwarding logic
 L2/L3 forwarding, ACL, QoS TCAM
- CPU
 Control and management
- Packet transport
 Cross bar switching fabric
 Component interconnects
- Ports (line cards)
 Port buffers
 Fabric buffers
- Not all switches are identical in architecture but have certain principles in common
Agenda

- Data Center Virtualized Access—Nexus 5000 and Nexus 2000
- Nexus 5000 (N5K)
 - Hardware Architecture
 - Day in the Life of a Packet
- Nexus 2000 (N2K)
 - Virtualized/Remote Line Card
 - N2K Hardware Architecture
 - Day in the Life of a Packet
- Virtualized Access Switch (N5K + N2K)
 - Port Channel and N2K Connectivity
 - Multicast
 - QoS
- Data Center Switch—Nexus 5000 and Nexus 2000
Nexus 5000 and 2000 Architecture
Nexus 5020
Nexus 5000 and 2000 Architecture
Nexus 5010

- Front-to-Back Airflow
- Mixed 10/1G Support
- Wire-Speed 10GE/FCoE/DCE
- Ethernet Out-of-Band Management
- 1 Expansion Module
- Redundant Power Supplies
- Redundant Fans
Nexus 5000 and 2000 Architecture
Expansion Modules

- Nexus 5000 utilizes expansion slots to provide flexibility of interface types
 - Additional 10GE DCB/FCoE compliant ports
 - 1/2/4/8G Fibre Channel ports
- Nexus 5020 has two expansion module slots
- Nexus 5010 has one expansion module slot
- Expansion Modules are hot swappable
- Contain no forwarding logic
Nexus 5000 and 2000 Architecture

Power Supplies

- **Nexus 5020 power supplies**
 - 1200 watt (N5K-PAC-1200W)
 - 750 watt (N5K-PAC-750W)

- Fully-loaded Nexus 5020 with 2 expansion modules and all links running at line rate only requires a **single** 750 watt power supply

```sql
Nexus 5020 power supplies
1200 watt (N5K-PAC-1200W)
750 watt (N5K-PAC-750W)
```

```
- Fully-loaded Nexus 5020 with 2 expansion modules and all links running at line rate only requires a **single** 750 watt power supply
```
Nexus 5000 Hardware Overview
Data and Control Plane Elements

Unified Crossbar Fabric

Unified Port Controller

Unified Port Controller

Unified Port Controller

Expansion Module

CPU

Intel LV Xeon 1.66 GHz

South Bridge

DRAM

NVRAM

Flash

Serial

Console

NIC

NIC

Mgmt 0

Inband Data Path to CPU

SERDES

XAUI
Nexus 5000 is a distributed forwarding architecture

Cisco Nexus 5020: Layer 2 hardware forwarding at 1.04 Tbps or 773.8 million packets per second (mpps)

Unified Port Controller (UPC) ASIC interconnected by a single stage Unified Crossbar Fabric (UCF)

Unified Port Controllers provide distributed packet forwarding capabilities

All port to port traffic passes through the UCF (Fabric)

Four switch ports managed by each UPC

- 14 UPC in Nexus 5020
- 7 UPC in Nexus 5010
Nexus 5000 Hardware Overview
Unified Crossbar Fabric

- 58-port crossbar and scheduler
 Three unicast and one multicast crosspoints

- Central tightly coupled scheduler
 Request, propose, accept, grant, and acknowledge semantics
 Packet enhanced iSLIP scheduler

- Distinct unicast and multicast schedulers

- Eight classes of service within the Fabric
Nexus 5000 Hardware Overview

Unified Port Controller

- Each UPC supports four ports and contains,
 - Multimode Media access controllers (MAC)
 - Support 1/10 G Ethernet and 1/2/4 G Fibre Channel
 - (2/4/8 G Fibre Channel MAC is located on the Expansion Module)
- Packet buffering and queuing
 - 480 KB of buffering per port
- Forwarding controller
 - Ethernet and Fibre Channel Forwarding and Policy
Nexus 5000 Hardware Overview

Control Plane Elements

- CPU - 1.66 GHz Intel LV Xenon
- DRAM - 2 GB of DDR2 400 (PC2 3200) in two DIMM slots
- Program Store - 1 GB of USB-based (NAND) flash
- Boot/BIOS - 2 MB of EEPROM with locked recovery image
- On-Board Fault Log - 64 MB of flash for failure analysis
- NVRAM - 2 MB of SRAM: Syslog and licensing information
- Management Interfaces - RS-232 console port: console 0
- Mgmt 0 interface partitioned from in-band VLANs
In-band traffic is identified by the UPC and punted to the CPU via two dedicated UPC interfaces, 5/0 and 5/1, which are in turn connected to eth3 and eth4 interfaces in the CPU complex.

- Eth3 handles Rx and Tx of low priority control pkts
 - IGMP, CDP, TCP/UDP/IP/ARP (for management purpose only)

- Eth4 handles Rx and Tx of high priority control pkts
 - STP, LACP, DCBX, FC and FCoE control frames (FC packets come to Switch CPU as FCoE packets)
Nexus 5000 Hardware Overview

Control Plane Elements

- CPU queuing structure provides strict protection and prioritization of inbound traffic
- Each of the two in-band ports has 8 queues and traffic is scheduled for those queues based on control plane priority (traffic CoS value)
- Prioritization of traffic between queues on each in-band interface
 - CLASS 7 is configured for strict priority scheduling (e.g. BPDU)
 - CLASS 6 is configured for DRR scheduling with 50% weight
 - Default classes (0 to 5) are configured for DRR scheduling with 10% weight
- Additionally each of the two in-band interfaces has a priority service order from the CPU
 - Eth 4 interface has high priority to service packets (no interrupt moderation)
 - Eth3 interface has low priority (interrupt moderation)
Nexus 5000 Hardware Overview

Control Plane Elements

- Monitoring of in-band traffic via the NX-OS built-in ethanalyzer
 - Eth3 is equivalent to ‘inbound-lo’
 - Eth4 is equivalent to ‘inbound-hi’

```plaintext
ethanalyzer local sniff-interface ?
inbound-hi Inbound (high priority) interface
inbound-low Inbound (low priority) interface
mgmt Management interface
```

- CLI view of in-band control plane data

```plaintext
dc11-5020-3# ethanalyzer local sniff-interface ?
inbound-hi Inbound (high priority) interface
inbound-low Inbound (low priority) interface
mgmt Management interface

dc11-5020-4# sh hardware internal cpu-mac inband counters
eth3 Link encap:Ethernet  HWaddr 00:0D:EC:B2:0C:83
  UP BROADCAST RUNNING PROMISC ALLMULTI MULTICAST  MTU:2200 Metric:1
  RX packets:3 errors:0 dropped:0 overruns:0 frame:0
  TX packets:630 errors:0 dropped:0 overruns:0 carrier:0
  collisions:0 txqueuelen:1000
  RX bytes:252 (252.0 b)  TX bytes:213773 (208.7 KiB)
  Base address:0x6020 Memory:fa4a0000-fa4c0000

eth4 Link encap:Ethernet  HWaddr 00:0D:EC:B2:0C:84
  UP BROADCAST RUNNING PROMISC ALLMULTI MULTICAST  MTU:2200 Metric:1
  RX packets:85379 errors:0 dropped:0 overruns:0 frame:0
  TX packets:92039 errors:0 dropped:0 overruns:0 carrier:0
  collisions:0 txqueuelen:1000
  RX bytes:33960760 (32.3 MiB)  TX bytes:25825826 (24.6 MiB)
  Base address:0x6000 Memory:fa440000-fa460000
```
Nexus 5000 Hardware Overview

Mgmt and Console Ports

- Nexus 5000 only supports a single out of band management connection - “MGMT 0”
- MGMT 0 is isolated from any data plane traffic - dedicated VRF and bypassing in-band data plane (provides secure access to management plane)
- Ports L1 and L2 are reserved for use for ‘Unified Computing System’ Fabric Interconnects (Nexus 5000 and UCS 6100 share common HW platform)
- MGMT 1 is not currently enabled
Agenda

- Data Center Virtualized Access — Nexus 5000 and Nexus 2000
- Nexus 5000 (N5K)
 - Hardware Architecture
 - Day in the Life of a Packet
- Nexus 2000 (N2K)
 - Virtualized/Remote Line Card
 - N2K Hardware Architecture
 - Day in the Life of a Packet
- Virtualized Access Switch (N5K + N2K)
 - Port Channel and N2K Connectivity
 - Multicast
 - QoS
- Data Center Switch—Nexus 5000 and Nexus 2000
Nexus 5000 Hardware Overview

UPC Details

- **Network Ports**
- **Transmit MAC**
- **Receive MAC**
- **Packet Forwarding and Header Re-Write Engine**
- **Congestion Control**
- **Egress In-flight Packet Queues**
- **Packet Buffer**
- **Virtual Output Queues**

Crossbar Fabric
Nexus 5000 Hardware Overview

Packet Forwarding Overview

1. Ingress MAC - MAC decoding, MACSEC processing (not supported currently), synchronize bytes

2. Ingress Forwarding Logic - Parse frame and perform forwarding and filtering searches, perform learning apply internal DCE header

3. Ingress Buffer (VoQ) - Queue frames, request service of fabric, dequeue frames to fabric and monitor queue usage to trigger congestion control

4. Cross Bar Fabric - Scheduler determines fairness of access to fabric and determines when frame is de-queued across the fabric

5. Egress Buffers - Landing spot for frames in flight when egress is paused

6. Egress Forwarding Logic - Parse, extract fields, learning and filtering searches, perform learning and finally convert to desired egress format

7. Egress MAC - MAC encoding, pack, synchronize bytes and transmit
Nexus 5000 Hardware Overview
UPC Forwarding Details

Parsed Packet

- Virtual Interface Table (512)
- Station Table (16K)
- ACL Search Engine (2K)
- Fibre Channel Multipath Table (1K)

Collect Interface Configuration and State

- VLAN Translation Table (4K)
- VLAN State Table (1K)
- Fibre Channel Switch Table (4K)
- Multicast Vector Table (4K)

Determine Destination (ingress only)

- Ethernet Learning
- RBACL Label Table (2K)
- Binding Table (2K)
- Zoning Table (2K)

Policy Enforcement

- Multipath Expansion (ingress only)
- PortChannel Table (16)

Editing Instructions & Virtual Output Queue List
Nexus 5000 Hardware Overview
UPC Ethernet and FC/FCoE Forwarding

- 16K Entry StationTable
 Searched by \{VLAN, destination address\}
- Unknown addresses forwarded by VLAN multicast vectors
 Unknown unicast
 Unregistered multicast
 Broadcast
- IP Multicast forwarded by MAC address
 IP multicast groups registered by IGMP v1, v2, v3 snooping
 Multicast vectors allocated dynamically based on destination membership
- Same mechanism forwards Fibre Channel in the local domain and N_Port Virtualizer
Nexus 5000 Hardware Overview

UPC Ethernet Learning

- Ingress and Egress HW-based learning
 - Line rate on for all frames
 - Facilitates distributed table population
- Ingress UPC notifies supervisor to develop MAC database
- Supervisor pushes new addresses to all Unified Port Controllers (UPC)
 - Adds entries if missed
 - Re-enforces existing entries
- Supervisor queries tables to check for consistency
 - Maintains aging state
- CPU removes entries that are obsolete
Nexus 5000 Hardware Overview
UPC Policy Enforcement

Parsed Packet

Collect Interface Configuration and State
- Virtual Interface Table (512)
- Station Table (16K)

Determine Destination (ingress only)
- Ethernet Learning
 - ACL Search Engine (2K)
 - Fibre Channel Multipath Table (1K)

Policy Enforcement
 - RBACL Label Table (2K)
 - Binding Table (2K)
 - Zoning Table (2K)

Multipath Expansion (ingress only)
 - PortChannel Table (16)

Editing Instructions & Virtual Output Queue List

Vlan Translation Table (4K)
Vlan State Table (1K)
Fibre Channel Switch Table (4K)
Multicast Vector Table (4K)

Switch Port Analyzer (SPAN) and Diagnostic Sampling

Control Plane Redirect/Snooping

VLAN Membership check
- pass
- fail

Interface, VLAN, and MAC Binding
- pass
- fail

MAC and L3 Binding (IP & Fibre Channel)
- pass
- fail

Fibre Channel Zone membership check
- pass
- fail

Port ACLs
- permit
- deny

VLAN ACLs (ingress)
- permit
- deny

Role Based ACLs (egress)
- permit
- deny

QoS ACLs (ingress)
- permit
- policer drop

to SPAN session to Supto SPAN session
Permit
Nexus 5000 Hardware Overview

UPC Multipath Expansion

- Nexus 5000 utilizes a two stage multipath expansion
- Fibre Channel load shares via F SPF or NPV
- Secondary multipath hashing via Ethernet port channel or FC port channel
- 16 port channels of up to 16 ports each for either SAN or LAN
Nexus 5000 utilizes a Cut Thru architecture when possible.

Bits are serialized in from the ingress port until enough of the packet header has been received to perform a forwarding and policy lookup.

Once a lookup decision has been made and the fabric has granted access to the egress port bits are forwarded through the fabric.

Egress port performs any header rewrite (e.g. CoS marking) and MAC begins serialization of bits out the egress port.
Nexus 5000 Hardware Overview
Packet Forwarding—Cut-Through Switching

- Nexus 5000 utilizes both cut-through and store and forward switching.

- Cut-through switching can only be performed when the ingress data rate is equivalent or faster than the egress data rate.

- The X-bar fabric is designed to forward 10G packets in cut-through which requires that 1G to 1G switching also be performed in store and forward mode.

Direction of Packet Flow:

- **Ingress 10G**
 - Unified Crossbar Fabric
 - **Egress 10G**
 - Cut-Through Mode

- **Ingress 10G**
 - Unified Crossbar Fabric
 - **Egress 1G**
 - Cut-Through Mode

- **Ingress 1G**
 - Unified Crossbar Fabric
 - **Egress 10G**
 - Store and Forward Mode

- **Ingress 1G**
 - Unified Crossbar Fabric
 - **Egress 1G**
 - Store and Forward Mode
Nexus 5000 Hardware Overview

Forwarding Mode Behavior (Cut-Through or Store and Forward)

<table>
<thead>
<tr>
<th>Source Interface</th>
<th>Destination Interface</th>
<th>Switching Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 GigabitEthernet</td>
<td>10 GigabitEthernet</td>
<td>Cut-Through</td>
</tr>
<tr>
<td>10 GigabitEthernet</td>
<td>1 GigabitEthernet</td>
<td>Cut-Through</td>
</tr>
<tr>
<td>1 GigabitEthernet</td>
<td>1 GigabitEthernet</td>
<td>Store-and-Forward</td>
</tr>
<tr>
<td>1 GigabitEthernet</td>
<td>10 GigabitEthernet</td>
<td>Store-and-Forward</td>
</tr>
<tr>
<td>FCoE</td>
<td>Fibre Channel</td>
<td>Cut-Through</td>
</tr>
<tr>
<td>Fibre Channel</td>
<td>FCoE</td>
<td>Store-and-Forward</td>
</tr>
<tr>
<td>Fibre Channel</td>
<td>Fibre Channel</td>
<td>Store-and-Forward</td>
</tr>
<tr>
<td>FCoE</td>
<td>FCoE</td>
<td>Cut-Through</td>
</tr>
</tbody>
</table>
Nexus 5000 Hardware Overview
Packet Forwarding—Cut Through Switching

- In Cut-Through switching frames are not dropped due to bad CRC
- Nexus 5000 implements a CRC ‘stomp’ mechanism to identify frames that have been detected with a bad CRC upstream
- A packet with a bad CRC is “stomped”, by replacing the “bad” CRC with the original CRC exclusive-OR’d with the STOMP value (a 1’s inverse operation on the CRC)
- In Cut Through switching frames with invalid MTU (frames with a larger MTU than allowed) are not dropped
- Frames with a “> MTU” length are truncated and have a stomped CRC included in the frame
Nexus 5000 Hardware Overview

Packet Forwarding—Cut Through Switching

- Corrupt or Jumbo frames arriving inbound will count against the Rx Jumbo or CRC counters
- Corrupt or Jumbo frames will be identified via the Tx output error and Jumbo counters

```bash
dc11-5020-4# sh int eth 1/39
<snip>
RX
  576 unicast packets  4813153 multicast packets  55273 broadcast packets
  4869002 input packets  313150983 bytes
  31 jumbo packets  <0 storm suppression packets
  0 runs  0 giants  0 CRC  0 no buffer
  0 input error  0 short frame  0 overrun  0 underrun  0 ignored
  0 watchdog  0 bad etype drop  0 bad proto drop  0 if down drop
  0 input with dribble  0 input discard
  0 Rx pause
```

```bash
dc11-5020-4# sh int eth 2/4
<snip>
TX
  112 unicast packets  349327 multicast packets  56083 broadcast packets
  405553 output packets  53600658 bytes
  31 jumbo packets  31 output errors
  0 collision  0 deferred  0 late collision
  0 lost carrier  0 no carrier  0 babble
  0 Tx pause
```
Nexus 5000 Hardware Overview
Packet Forwarding—Cut Thru Switching

- CRC and ‘stomped’ frames are tracked internally between ASIC’s within the switch as well as on the interface to determine internal HW errors are occurring.

```
dc11-5020-4# sh hardware internal gatos asic 2 counters interrupt
<snip>
Gatos 2 interrupt statistics:
Interrupt name | Count  | ThresRch | ThresCnt | Ivls
-----------------+--------+----------+----------+----
<snip>
gat_bm_port0_INT_err_ig_mtu_vio | 1f     | 0        | 1f       |   
<snip>
```

```
dc11-5020-4# sh hardware internal gatos asic 13 counters interrupt
<snip>
Gatos 13 interrupt statistics:
Interrupt name | Count  | ThresRch | ThresCnt | Ivls
-----------------+--------+----------+----------+----
<snip>
gat_fw2_INT_eg_pkt_err_cb_bm_eof_err | 1f     | 0        | 1        | 0  
gat_fw2_INT_eg_pkt_err_eth_crc_stomp  | 1f     | 0        | 1        | 0  
gat_bwg0_INT_rb_pkt_err_ip_pyld_len_err | 1f     | 0        | 1        | 0  
gat_mm2_INT_rlp_tx_pkt_crc_err       | 1f     | 0        | 1        | 0  
```

NOTE: At this point in your troubleshooting as you start to look at ASIC hardware counters you should be calling TAC ☺️
Nexus 5000 Hardware Overview
CRC Behavior for Cut-Thru Frames

- The table below indicates the forwarding behavior for a corrupt packet (CRC error) arriving on a port operating in cut-through mode.

<table>
<thead>
<tr>
<th>Source Interface Type</th>
<th>Destination Interface Type</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>10GE/DCE/FCoE</td>
<td>10GE/DCE/FCoE</td>
<td>The CRC frame is transmitted as is</td>
</tr>
<tr>
<td>10GE/DCE/FCoE</td>
<td>Native Fibre Channel</td>
<td>The FC CRC is stomped. Also the frame is transmitted with EOFa</td>
</tr>
<tr>
<td>Native Fibre Channel</td>
<td>Native Fibre Channel</td>
<td>The FC CRC is stomped. Also the frame is transmitted with EOFa</td>
</tr>
<tr>
<td>Native Fibre Channel</td>
<td>10GE/DCE/FCoE</td>
<td>The FC CRC is stomped. Also the frame is transmitted with EOFa. Also the Ethernet CRC is stomped</td>
</tr>
</tbody>
</table>
Nexus 5000 Hardware Overview
Packet Forwarding—Fibre Channel and FCoE

- Nexus 5000 operates as both an Ethernet switch and a Fibre Channel switch
- Supports native FC as well as FCoE interfaces
- Internally within the switching fabric all Fibre Channel frames are forwarded as DCE/FCoE frames
 - FC to FCoE
 - FC to FC
 - FCoE to FC
 - FCoE to FCoE

All FC/FCoE Packets within the switching fabric are forwarded as DCE/FCoE frames

Forwarding logic either forwards FCoE frame or removes header and forwards FC frame

Forwarding logic adds Ethernet, FCoE and internal DCE headers

Forwarding logic either forwards FCoE frame or removes header and forwards FC frame
Nexus 5000 Hardware Overview

Packet Forwarding—Ingress Queuing

- In typical Data Center access designs, multiple ingress access ports transmit to a few uplink ports.
- Nexus 5000 utilizes an **Ingress Queuing** architecture.
- Packets are stored in ingress buffers until the egress port is free to transmit.
- Ingress queuing provides an additive effective.
- The total queue size available is equal to the number of ingress ports times the queue depth per port.
- Statistically, ingress queuing provides the same advantages as shared buffer memory architectures.

Traffic is Queued on all ingress interface buffers providing a cumulative scaling of buffers for congested ports.

Egress Queue 0 is full, link congested.
Nexus 5000 Hardware Overview
Packet Forwarding—Virtual Output Queues

- Nexus 5000 uses an 8 Queue QoS model for unicast traffic
- Traffic is Queued on the Ingress buffer until the egress port is free to transmit the packet
- To prevent Head of Line Blocking (HOLB) Nexus 5000 uses a Virtual Output Queue (VoQ) Model
- Each ingress port has a unique set of 8 virtual output queues for every egress port (8 x 58 = 464 unicast VoQ on every ingress port)
- If Queue 0 is congested for any port traffic in Queue 0 for all the other ports is still able to be transmitted
- Common shared buffer on ingress, VoQ are pointer lists and not physical buffers
Nexus 5000 Hardware Overview

UPC and 1G Ethernet

- Support for 1G speed on first 16 ports of Nexus 5020 and first eight ports of Nexus 5010
- Need to explicitly specify that the port runs at 1G speed
- Requires the use of a standard 1G SFP
 - GLC-T, GLC-SX-MM, GLC-LH-SM, SFP-GE-T, SFP-GE-S, SFP-GE-L (DOM capable SFP are supported)
- Supports for all features at 1G speed other than Unified I/O
 - No FCoE (no 1G Converged Network Adapters are shipping)
 - No Priority Flow Control (standard Pause is available)

```
interface Ethernet1/3
  switchport access vlan 800
  speed 1000
  channel-group 800
```
Nexus 5000 Hardware Overview

UPC and Port Mapping

- UPC interfaces are indirectly mapped to front panel ports
- Mapping of ports to UPC (Gatos) ASIC
 - The left column identifies the Ethernet interface identifier, xgb1/8 = e1/8
 - Column three and four reflect the UPC port that is associated with the physical Ethernet port

```
dc11-5020-3# show hardware internal gatos all-ports
<snip>
Gatos Port Info:

<table>
<thead>
<tr>
<th>name</th>
<th>log</th>
<th>gat</th>
<th>mac</th>
<th>flag</th>
<th>adm</th>
<th>opr</th>
<th>c:m:s:l</th>
<th>ipt</th>
<th>fab</th>
<th>xgat</th>
<th>xpt</th>
<th>if_index</th>
<th>diag</th>
</tr>
</thead>
<tbody>
<tr>
<td>1gb1/8</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>b7</td>
<td>en</td>
<td>up</td>
<td>0:0:0:0:0</td>
<td>55</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1a007000</td>
<td>pass</td>
</tr>
<tr>
<td>1gb1/7</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>b7</td>
<td>dis</td>
<td>dn</td>
<td>0:1:0:1:0</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1a006000</td>
<td>pass</td>
</tr>
<tr>
<td>1gb1/3</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>b7</td>
<td>en</td>
<td>up</td>
<td>1:2:0:2:0</td>
<td>56</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>1a002000</td>
<td>pass</td>
</tr>
<tr>
<td>xgb1/4</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>b7</td>
<td>dis</td>
<td>dn</td>
<td>1:3:3:f:3</td>
<td>57</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>1a003000</td>
<td>pass</td>
</tr>
<tr>
<td>xgb1/1</td>
<td>0</td>
<td>7</td>
<td>2</td>
<td>b7</td>
<td>dis</td>
<td>dn</td>
<td>1:2:2:f:2</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>1a000000</td>
<td>pass</td>
</tr>
<tr>
<td>xgb1/2</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>b7</td>
<td>dis</td>
<td>dn</td>
<td>1:3:3:f:3</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>1a001000</td>
<td>pass</td>
</tr>
</tbody>
</table>
```
Agenda

- Data Center Virtualized Access — Nexus 5000 and Nexus 2000
- Nexus 5000 (N5K)
 Hardware Architecture
 Day in the Life of a Packet
- Nexus 2000 (N2K)
 Virtualized/Remote Line Card
 N2K Hardware Architecture
 Day in the Life of a Packet
- Virtualized Access Switch (N5K + N2K)
 Port Channel and N2K Connectivity
 Multicast
 QoS
- Data Center Switch—Nexus 5000 and Nexus 2000
The Nexus 2000 Fabric Extender (FEX) acts as a remote line card (module) for the Nexus 5000, retaining all centralized management and configuration on the Nexus 5000, transforming it to a Virtualized Chassis.
Cisco Nexus 2000 Fabric Extender

Fabric Extender Terminology

- **Parent Switch**: Acts as the combined Supervisor and Switching Fabric for the virtual switch.

- **Fabric Links**: Extends the Switching Fabric to the remote line card (Connects Nexus 5000 to Fabric Extender).

- **Host Interfaces** (HIF)

- Fabric connectivity between Nexus 5000 and Nexus 2000 (FEX) can leverage either pinning or port-channels.

```
dc11-5020-1# show interface fex-fabric

<table>
<thead>
<tr>
<th>Fex</th>
<th>Port</th>
<th>Port State</th>
<th>Uplink</th>
<th>Model</th>
<th>Serial</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Eth1/17</td>
<td>Active</td>
<td>1</td>
<td>N2K-C2148T-1GE</td>
<td>JAF1311AFLL</td>
</tr>
<tr>
<td>100</td>
<td>Eth1/18</td>
<td>Active</td>
<td>2</td>
<td>N2K-C2148T-1GE</td>
<td>JAF1311AFLL</td>
</tr>
<tr>
<td>100</td>
<td>Eth1/19</td>
<td>Active</td>
<td>3</td>
<td>N2K-C2148T-1GE</td>
<td>JAF1311AFLL</td>
</tr>
<tr>
<td>100</td>
<td>Eth1/20</td>
<td>Active</td>
<td>4</td>
<td>N2K-C2148T-1GE</td>
<td>JAF1311AFLL</td>
</tr>
<tr>
<td>101</td>
<td>Eth1/21</td>
<td>Active</td>
<td>1</td>
<td>N2K-C2148T-1GE</td>
<td>JAF1311AFMT</td>
</tr>
<tr>
<td>101</td>
<td>Eth1/22</td>
<td>Active</td>
<td>2</td>
<td>N2K-C2148T-1GE</td>
<td>JAF1311AFMT</td>
</tr>
</tbody>
</table>
```
Cisco Nexus 2000 Fabric Extender

Configuring the Fabric

- Two step process
 - Define the Fabric Extender (100–199) and the number of fabric uplinks to be used by that FEX (valid range: 1–4)

```bash
dc11-5020-1# switch# configure terminal
dc11-5020-1(config)# fex 100
dc11-5020-1(config-fex)# pinning max-links 4
```

- Configure Nexus 5000 ports as fabric ports and associate the desired FEX

```bash
dc11-5020-1# switch# switch# configure terminal
dc11-5020-1(config)# interface ethernet 1/1
dc11-5020-1(config-if)# switchport mode fex-fabric
dc11-5020-1(config-if)# fex associate 100
```

<repeat for all 4 interfaces used by this FEX>
Cisco Nexus 2000 Fabric Extender
Fabric Connectivity

Show the attached Fabric Extenders

```
dc11-5020-1# show fex
<table>
<thead>
<tr>
<th>FEX Number</th>
<th>FEX Description</th>
<th>FEX State</th>
<th>FEX Model</th>
<th>FEX Serial</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>FEX0100</td>
<td>Online</td>
<td>N2K-C2148T-1GE</td>
<td>JAF1311AFLL</td>
</tr>
<tr>
<td>101</td>
<td>FEX0101</td>
<td>Online</td>
<td>N2K-C2148T-1GE</td>
<td>JAF1311AFMT</td>
</tr>
</tbody>
</table>
```

Show the status of fabric link ‘port-channel 100’

```
dc11-5020-1# show interface port-channel 100
port-channel100 is up
  Hardware: Port-Channel, address: 000d.eca4.5318 (bia 000d.eca4.5318)
  Port mode is fex-fabric
```

Show the N2K interfaces carried over fabric link ‘port-channel 101’

```
dc11-5020-1# sh int port-channel 101 fex-intf
<table>
<thead>
<tr>
<th>Fabric Interface</th>
<th>FEX Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Po101</td>
<td>Eth101/1/1</td>
</tr>
<tr>
<td></td>
<td>Eth101/1/2</td>
</tr>
<tr>
<td></td>
<td>Eth101/1/3</td>
</tr>
<tr>
<td></td>
<td>Eth101/1/4</td>
</tr>
<tr>
<td></td>
<td>Eth101/1/5</td>
</tr>
<tr>
<td></td>
<td>Eth101/1/6</td>
</tr>
<tr>
<td></td>
<td>Eth101/1/7</td>
</tr>
<tr>
<td></td>
<td>Eth101/1/8</td>
</tr>
</tbody>
</table>
```

Show the interfaces themselves (N2K interfaces are N5K ports)

```
dc11-5020-1# sh int brief
<table>
<thead>
<tr>
<th>Ethernet Interface</th>
<th>VLAN</th>
<th>Type</th>
<th>Mode</th>
<th>Status</th>
<th>Reason</th>
<th>Speed</th>
<th>Port Ch #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth100/1/1</td>
<td>1</td>
<td>eth</td>
<td>access up</td>
<td>none</td>
<td></td>
<td>1000 (D)</td>
<td>--</td>
</tr>
<tr>
<td>Eth100/1/2</td>
<td>1</td>
<td>eth</td>
<td>access down</td>
<td>Link not connected</td>
<td></td>
<td>1000 (D)</td>
<td>--</td>
</tr>
<tr>
<td>Eth100/1/3</td>
<td>1</td>
<td>eth</td>
<td>access up</td>
<td>none</td>
<td></td>
<td>1000 (D)</td>
<td>--</td>
</tr>
</tbody>
</table>
Agenda

- Data Center Virtualized Access — Nexus 5000 and Nexus 2000
- Nexus 5000 (N5K)
  - Hardware Architecture
  - Day in the Life of a Packet
- Nexus 2000 (N2K)
  - Virtualized/Remote Line Card
  - N2K Hardware Architecture
  - Day in the Life of a Packet
- Virtualized Access Switch (N5K + N2K)
  - Port Channel and N2K Connectivity
  - Multicast
  - QoS
- Data Center Switch—Nexus 5000 and Nexus 2000
Cisco Nexus 2148T Fabric Extender
Overview

- 48 x 1 GigabitEthernet (1000BASE-T) Interfaces
- 4 x 10 GigabitEthernet Interfaces
- Beacon & Status LEDs
- Redundant, Hot-Swappable Power Supplies
- Hot-Swappable Fan Tray
Cisco Nexus 2248T Fabric Extender
Overview

48 x 100/1000M (RJ45) Interfaces

4 x 10 GigabitEthernet Interfaces

Beacon & Status LEDs

Redundant, Hot-Swappable Power Supplies

Hot-Swappable Fan Tray
Cisco Nexus 2232PP Fabric Extender

Overview

- 32 x 10 GigabitEthernet (SFP+) & FCoE Interfaces
- 8 x 10 GigabitEthernet Interfaces
- Beacon & Status LEDs
- Redundant, Hot-Swappable Power Supplies
- Hot-Swappable Fan Tray
# Nexus 2148T, 2232, 2248 Capabilities

<table>
<thead>
<tr>
<th>Features</th>
<th>2148</th>
<th>2248</th>
<th>2232</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric Ports (NIF)</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Fabric Link Port Speed (NIF)</td>
<td>10Gbps</td>
<td>10Gbps</td>
<td>10Gbps</td>
</tr>
<tr>
<td>Port Channels on Fabric Links (NIF)</td>
<td>1 x 4 ports maximum Hash L2/L3 fields</td>
<td>1 x 4 ports maximum Hash L2/L3/L4</td>
<td>1 x 8 ports maximum Hash L2/L3/L4</td>
</tr>
<tr>
<td>Host Ports (HIF)</td>
<td>48</td>
<td>48</td>
<td>32</td>
</tr>
<tr>
<td>Host Port Speeds (HIF)</td>
<td>1 Gbps only</td>
<td>100Mb/1Gbps</td>
<td>1Gbps/10Gbps (No 1 Gbps at FCS, Q3CY10)</td>
</tr>
<tr>
<td>Local Port Channels on Host Ports (HIF)</td>
<td>Not Supported</td>
<td>Max 8 ports per port channel, Max of 24 port channels per 2248 Hash L2/L3/L4</td>
<td>Max 8 ports per port channel, Max of 16 port channels per 2232 Hash L2/L3/L4</td>
</tr>
<tr>
<td>FCoE/DCB Servers</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Supported Parent Switches</td>
<td>Nexus 5010/5020</td>
<td>Nexus 5010/5020 Nexus 7010/7018 *</td>
<td>Nexus 5010/5020 Nexus 7010/7018 *</td>
</tr>
</tbody>
</table>

Requires N7K-M132XP-12 or N7K-M132XP-12L, Support for 2248 Target Is Q3CY’10, Support for 2232 Target Is Q4CY’10 (No DCB or FCoE Support at FCS for 2232 on Nexus 7000)
Agenda

- Data Center Virtualized Access — Nexus 5000 and Nexus 2000
- Nexus 5000 (N5K)
  - Hardware Architecture
  - Day in the Life of a Packet
- Nexus 2000 (N2K)
  - Virtualized/Remote Line Card
  - N2K Hardware Architecture
  - Day in the Life of a Packet
- Virtualized Access Switch (N5K + N2K)
  - Port Channel and N2K Connectivity
  - Multicast
  - QoS
- Data Center Switch—Nexus 5000 and Nexus 2000
Nexus 2000 Fabric Extender
Network Interface Virtualization Architecture (NIV)

- The Network Interface Virtualization (NIV) Architecture provides the ability to extend the bridge (switch) interface to downstream devices
- NIV associates the Logical Interface (LIF) to a Virtual Interface (VIF)

Bridges that support Interface Virtualization (IV) ports must support VNTag and the VIC protocol
NIV uplink ports must connect to an NIV capable bridge or an NIV Downlink
NIV may be cascaded extending the port extension one additional level
NIV capable adapters may extending the port extension

NIV downlink ports are assigned a virtual identifier (VIF) that corresponds to a virtual interface on the bridge and is used to forward frames through NIV's

Note: Not All Designs Supported in the NIV Architecture Are Currently Implemented
Nexus 2000 Fabric Extender

VN-Tag

- **direction** indicates to/from adapter
- **source virtual interface** indicates frame source
  - looped indicates frame came back to source adapter
- **destination virtual interface** dictates forwarding
  - pointer helps pick specific destination vNIC or vNIC list
- **Link local scope**
  - Rooted at Virtual Interface Switch
  - 4096 virtual interfaces
  - 16,384 Virtual interface lists
- **Coexists with VLAN (802.1Q) tag**
  - 802.1Q tag is **mandatory** to signal data path priority
Nexus 2000 Fabric Extender
VN-Tag Port Extension

- Nexus 2000 Fabric Extender operates as a remote line card and does **not** support local switching
- All forwarding is performed on the Nexus 5000 UPC ASIC
- VNTag is a Network Interface Virtualization (NIV) technology that ‘extends’ the Nexus 5000 port down (Logical Interface = LIF) to the Nexus 2000 VIF referred to as a Host Interface (HIF)
  - VNTag is added to the packet between Fabric Extender and Nexus 5000
  - VNTag is stripped before the packet is sent to hosts
- VNTag allows the Fabric Extender to act as a data path of Nexus 5000 for all policy and forwarding
Nexus 2000 Fabric Extender
Host-to-Network Forwarding Part 1

- Nexus 2000 adds VNTAG
  - Unique VNTag for each Nexus 2000 Host Interface (HIF)
- VNTag field values
  - Direction bit is set to 0 indicating host to network forwarding
  - Source Virtual Interface is set based on the ingress HIF
  - p (pointer), l (looped), and destination virtual interface are undefined (0)
- Frame is unconditionally sent to the Nexus 5000

<table>
<thead>
<tr>
<th>VNTAG Ethertype</th>
<th>d</th>
<th>p</th>
<th>destination virtual interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>source virtual interface</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Frame arrives from host
2. Packet is forwarded over fabric link using a specific VNTag
Nexus 2000 Fabric Extender
Host-to-Network Forwarding Part 2

- Nexus 5000 ingress processing on fabric ports
- UPC extracts VNTAG which identifies the Logical Interface (LIF) corresponding to the physical HIF on the actual Nexus 2000
- Ingress policy based on physical Nexus 5000 port and LIF
  - Access control and forwarding based on frame fields and virtual interface (LIF) policy
  - Physical link level properties (e.g. MACSEC, ...) are based on the Nexus 5000 port
- Forwarding selects destination port(s) and/or destination virtual interface(s)
Nexus 2000 Fabric Extender

Network to Host Forwarding

- Nexus 5000 performs standard lookup and policy processing, when the egress port is determined to be an LIF (Nexus 2000) port
  - Insert VNTAG with direction is set to 1 (network to host)
  - Destination virtual interface is set to be the Nexus 2000 port VNTag
  - Source virtual interface is set if packet was sourced from an N2K port
  - L bit (looped) filter set if sending back to a source N2K
  - P bit is set if this is a multicast frame and requires egress replication

1. Frame is received on physical or LIF interface and lookup is performed by ingress UPC
2. Packet is forwarded over fabric link using a specific VNTag
3. VNTag is stripped by N2K and frame is forwarded to HIF
Nexus 5000 and 2000
Packet Forwarding Overview

1. Frame received on N2K HIF port
2. Nexus 2000 appends VNTag and forwards frame to fabric uplink
3. Nexus 5000 UPC performs ingress forwarding and queuing
4. If required egress queuing and flow control
5. Nexus 5000 UPC appends destination VNTag and forwards frame on fabric link
6. VNTag stripped and frame forwarded out on N2K HIF port
Nexus 2000 Fabric Extender
Nexus 2000 Packet Forwarding

- Nexus 2000 Fabric Extender operates as a remote line card and does not support local switching
- All forwarding is performed on the Nexus 5000 UPC ASIC
- Ingress interfaces (HIF) are forwarded to Network/Fabric Interfaces (NIF) based on how the fabric links are configured

Nexus 2000 Fabric Extender operates as a remote line card and does not support local switching. All forwarding is performed on the Nexus 5000 UPC ASIC. Ingress interfaces (HIF) are forwarded to Network/Fabric Interfaces (NIF) based on how the fabric links are configured.
Nexus 2000 Fabric Extender
Fabric—Static Pinning

- Static Pinning associates (maps) specific server ports to specific fabric links

- Need to ensure that the same number of Ethernet ports are assigned as fex-fabric ports as defined in the ‘max-links’ parameter for that Fabric Extender

```
interface Ethernet1/1
 switchport mode fex-fabric
 fex associate 100

interface Ethernet1/2
 switchport mode fex-fabric
 fex associate 100

interface Ethernet1/3
 switchport mode fex-fabric
 fex associate 100

interface Ethernet1/4
 switchport mode fex-fabric
 fex associate 100

!
 fex 100
 pinning max-links 4
 description Rack_100
```
Nexus 2000 Fabric Extender

Fabric—Static Pinning

- Packets within the Nexus 2000 are ‘pinned’ or mapped from a specific ingress interface (HIF) to a specific fabric interface (NIF)
- When configured in ‘static pinning’ mode specific HIF are statically mapped to specific NIF
- Changing the number if fabric links requires the ASIC ‘pinning’ to be changed and is disruptive to traffic flows

```plaintext
dc11-5020-2# sh fex 150 detail
 FEX: 150 Description: FEX0150 state: Online
 <snip>
 pinning-mode: static Max-links: 2
 Fabric port for control traffic: Eth1/29
 Fabric interface state:
 Eth1/29 - Interface Up. State: Active
 Eth1/30 - Interface Up. State: Active
 Fex Port State Fabric Port Primary Fabric
 Eth150/1/1 Down Eth1/29 Eth1/29
 Eth150/1/2 Down Eth1/29 Eth1/29
 <snip>
 Eth150/1/25 Down Eth1/30 Eth1/30
 Eth150/1/26 Down Eth1/30 Eth1/30
 <snip>
```
Configure the Fabric EtherChannel

Configure the Port Channel and Its Members to be Associated with a Specific Fabric Extender

All server ports ‘pinned’ to a single logical fabric link

interface port-channel1
    switchport mode fex-fabric
description Fabric Extender 100
fex associate 100

interface Ethernet1/1
    switchport mode fex-fabric
description Fabric Extender 100 Etherchannel Link
channel-group 1
fex associate 100

interface Ethernet1/2
    switchport mode fex-fabric
description Fabric Extender 100 Etherchannel Link
channel-group 1
fex associate 100

interface Ethernet1/3
    switchport mode fex-fabric
description Fabric Extender 100 Etherchannel Link
channel-group 1
fex associate 100

interface Ethernet1/4
    switchport mode fex-fabric
description Fabric Extender 100 Etherchannel Link
channel-group 1
fex associate 100

fex 100
    pinning max-links 1
description Fabric Extender 100 – Using Etherchannel 1
Nexus 2000 Fabric Extender
Fabric Port Channel Configuration

- In the fabric port channel configuration the internal forwarding within the Nexus 2000 ASIC is still ‘pinned’

- All HIF interfaces are pinned to an internal port channel NIF interface rather than to specific physical NIF interfaces

- Changing the number of fabric links does not require a changing in the internal forwarding mapping within the Nexus 2000 ASIC and is this ‘non-disruptive’

dc11-5020-1# sh fex 101 detail
FEX: 101 Description: vPC-FEX state: Online

```
<snip>

 pinning-mode: static **Max-links:** 1
Fabric port for control traffic: Eth1/21
Fabric interface state:
 Po101 - Interface Up. State: Active
 Eth1/21 - Interface Up. State: Active
 Eth1/22 - Interface Up. State: Active

Fex Port State Fabric Port Primary Fabric
 Eth101/1/1 Up Po101 Po101
 Eth101/1/2 Up Po101 Po101
 Eth101/1/3 Down Po101 Po101
```

Fabric Pinning

Fabric Ports
Nexus 2000 Fabric Extender
Nexus 2000 Packet Forwarding

- Fabric Extender associates (pins) a server side (1GE) port with a fabric uplink.

- Server ports are either individually pinned to specific uplinks (static pinning) or all interfaces pinned to a single logical port channel.

- Behavior on FEX uplink failure depends on the configuration.

  - **Static Pinning** - Server ports pinned to the specific uplink are brought down with the failure of the pinned uplink.

  - **Port Channel** - Server traffic is shifted to remaining uplinks based on port channel hash.
Nexus 5000 and 2000 Virtual Switch
Packet Forwarding Latency

- Nexus 2000 also supports Cut-Through switching
  - 1GE to 10GE on first N2K ingress is store and forward
  - All other stages are Cut Through (10GE N2K port operates in end to end cut through)
- Port to Port latency is dependent on a single store and forward operation at most
Nexus 5000 and 2000
Switching Morphology—Is this Really Different?
Agenda

- Data Center Virtualized Access — Nexus 5000 and Nexus 2000
- Nexus 5000 (N5K)
  - Hardware Architecture
  - Day in the Life of a Packet
- Nexus 2000 (N2K)
  - Virtualized/Remote Line Card
  - N2K Hardware Architecture
  - Day in the Life of a Packet
- Virtualized Access Switch (N5K + N2K)
  - Port Channel and N2K Connectivity
  - Multicast
  - QoS
- Data Center Switch—Nexus 5000 and Nexus 2000
Virtualized Access Switch

Virtual Switch—How Many ???

- The number of server ports, port channels, Fabric Extenders supported in a single virtual switch is dependent on two factors

  - Control Plane Scalability
    - Number of Server Ports supported
    - Number of Fabric Extenders Supported
    - Number of vPC Port Channels Supported

  - Physical System Scalability
    - Number of HW Port Channels
    - Number of Ports on the N5K

- The total number of Fabric Extenders that may be connected is dependent on the intersection of all of these factors
Nexus Virtualized Access Switch
Nexus 5000, 2148/2248/2232 and Port Channels

- Three distinct elements to port channel scaling
- Nexus 5000 Port Channels (ports physically attached to Nexus 5000)
  - 16 total (including both Ethernet and Fibre Channel)
- FEX Local Port Channels
  - 2148T – 0
  - 2248T – 24
  - 2232 - 16
- vPC Port Channels
  - 4.1(3) – 480
  - 4.2(1) - 576
Nexus Virtualized Access Switch
Nexus 5000 Port Channels

- Nexus 5000 UPC forwarding expansion has 16 entries allocated for port channels
- Hardware then hashes across physical ports configured into that bundle

IF map

Port map

VOQ map

To Queuing Subsystem
Nexus Virtualized Access Switch
Nexus 5000 Port Channel Expansion Algorithm

- Relevant frame fields
  - Ethernet Source Address and Destination Address always available
  - IP frames allows inclusion of IP v4/v6 Source and Destination Address
    - TCP/UDP frames can include source and destination ports
    - Fibre Channel frames can include D_ID and S_ID
      - OX_ID can also be included per VSAN

- Each field is divided by one of two CRC-8 polynomials
- Result of field CRC division is combined via bitwise XOR
- Result selected using modulo division by number of equal cost paths
  - 256 possibilities are reduced to avoid bias
Nexus Virtualized Access Switch
Nexus 5000 Port Channel Efficiency

- Prior generations of Etherchannel load sharing leveraged eight hash buckets
- Could lead to non optimal load sharing with an odd number of links
- Nexus 5000 and 2000 utilize 256 buckets
- Provides better load sharing in normal operation and avoids in-balancing of flows in any link failure cases

```
dc11-5020-3# sh port-channel load-balance forwarding-path interface port-channel 100 dst-ip 10.10.10.10 src-ip 11.11.11.11
Missing params will be substituted by 0's.
Load-balance Algorithm: source-dest-ip
crc8_hash: 24 Outgoing port id: Ethernet1/37
```
Nexus Virtualized Access Switch
Nexus 2148/2248/2232 Port Channels

- Nexus 2248/2232 FEX support local port channels
- All FEX ports are extended ports (Logical Interfaces = LIF)
- A local port channel on the N2K is still seen as a single extended port
- Extended ports are each mapped to a specific VNTag
- HW hashing occurs on the N2K ASIC
- Number of ‘local’ port channels on each N2K is based on the local ASIC
  - 2148T - 0
  - 2248T - 24
  - 2232 - 16

1. Packet is received and lookup forwards out a LIF (N2K) interface
2. Packet is forwarded over fabric link using a specific VNTag for the destination N2K LIF (port channel)
3. N2K ASIC hashes locally and transmits packet on one HIF interface
Nexus Virtualized Access Switch
Nexus Virtual Port Channels (vPC)

- A Virtual Port Channel (vPC) is synchronization of the forwarding behavior across two physical switches
- The number of vPC ‘port channels’ is based on control plane scaling

---

<table>
<thead>
<tr>
<th>VLAN</th>
<th>MAC Address</th>
<th>Type</th>
<th>Age</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>001f.275e.2918</td>
<td>dynamic</td>
<td>0</td>
<td>Po50</td>
</tr>
<tr>
<td>200</td>
<td>001f.275e.7f98</td>
<td>dynamic</td>
<td>300</td>
<td>Po50</td>
</tr>
</tbody>
</table>

---

N5K vPC Port Channels
- 4.1(3) - 480
- 4.2(1) - 576
Nexus Virtualized Access Switch
Dual Homed Nexus 2000 and vPC Host Ports

- NX-OS 4.1(3)N1 release supports vPC on the Nexus 5000 either for use to provide server NIC teaming or to provide dual supervisor configuration for the virtualized switch

- In the redundant supervisor mode the Etherchannel fabric uplink is split across two N5Ks

- Static pinning is not supported in a redundant supervisor mode

- Server ports appear on both N5K

- Currently configuration for all ports must be kept in sync manually on both N5Ks
Configure the vPC Peer Link (Full vPC Configuration not included in this example)

Configure the Physical Ports as Members of the Fabric EtherChannel

Configure the Port Channel and Its Members to be Associated with a Specific Fabric Extender

interface port-channel10
  switchport mode trunk
  switchport trunk allowed vlan 1,10
  vpc peer-link

interface port-channel50
  switchport mode fex-fabric
  vpc 50
  fex associate 100

interface Ethernet1/17
  switchport mode trunk
  switchport trunk allowed vlan 1,10
  channel-group 10 mode active

interface Ethernet1/18
  switchport mode trunk
  switchport trunk allowed vlan 1,10
  channel-group 10 mode active

interface Ethernet1/37
  switchport mode fex-fabric
  channel-group 50
  fex associate 100

interface Ethernet1/38
  switchport mode fex-fabric
  channel-group 50
  fex associate 100

fex 100
  pinning max-links 1
Nexus Virtualized Access Switch

Nexus 2000 vPC Host Ports

- A port on a dual homed Nexus 2000 is known as a vPC Host Port
- LIF port state is replicated and synchronized across both Nexus 5000 (CPU and memory load is replicated \textit{not} distributed)

\begin{verbatim}
dc11-5020-3# sh vpc
<snip>
vPC status
----------------------------------------
id  Port     Status Consistency   Reason   Active vlans
<snip>
157708 Eth155/1/13 up  success     success      105

157708 Eth155/1/13 up  success     success      105
\end{verbatim}
Nexus Virtualized Access Switch
Nexus 2248/2232 Port Channel Scaling

- A maximum of 576 vPC port channels (max of 16 links per vPC port channel)
- Maximum of 12 x FEX connected to each Nexus 5000 (576 ports on each Nexus 5000 = 1152 total)

- Maximum of 288 HIF port channels (maximum of 8 links per port channel)
- Maximum of 12 x FEX connected to both Nexus 5000 (576 ports total)
“Dual Tier vPC”—Port Channel of a Port Channel

- “Dual tiered” vPC is **not** currently supported
- vPC provides a logical port channel interface on the N5K
- In the unsupported configuration shown each N2K is attached with a port channel fabric interface and then carried over that interface is a second server port channel interface
- Two dependent layers of Etherchannel hashing (Server and N2K) for the same flows
- Two tiers of vPC as shown will result in MAC addresses flapping between two fabric ports (LIF)
- Timeframes to support this configuration is targeted for 1HCY11

“Dual Tier vPC” as shown above is **not** currently supported
Agenda

- Data Center Virtualized Access — Nexus 5000 and Nexus 2000
- Nexus 5000 (N5K)
  - Hardware Architecture
  - Day in the Life of a Packet
- Nexus 2000 (N2K)
  - Virtualized/Remote Line Card
  - N2K Hardware Architecture
  - Day in the Life of a Packet
- Virtualized Access Switch (N5K + N2K)
  - Port Channel and N2K Connectivity
  - Multicast
  - QoS
- Data Center Switch— Nexus 5000 and Nexus 2000
Nexus 5000 Multicast Forwarding
Fabric-Based Replication

- Nexus 5000 uses fabric based egress replication
- Traffic is queued in the ingress UPC for each MCAST group
- When the scheduler permits the traffic if forwarded into the fabric and replicated to all egress ports
- When possible traffic is super-framed (multiple packets are sent with a single fabric scheduler grant) to improve throughput
Nexus 5000 Multicast Forwarding
Multicast Queues and Multicast Group Fan-Out

- A “FAN-OUT” = is an Output Interface List (OIL)
- The Nexus 5000 currently supports 1000 fan-outs and 4000 Multicast Groups
- The multicast groups need to be mapped to the 1000 fan-outs
- There are eight multicast queues per UPC forwarding engine (no VoQ for multicast)
- Hardware needs to map fan-outs to the eight queues
- Multicast scheduler waits until all egress queues are free to accept a frame before traffic in that queue is replicated across the fabric
Nexus 5000 Multicast Forwarding

Multicast Queues and Multicast Group Fan-Out

- Overlap of multicast groups to fan-outs to queues can result in contention for the fabric for a specific group.
- Tuning of the multicast traffic and fan-out mapping to queues can be used to prioritize specific groups access to the fabric.
- Of the eight queues available for multicast two are reserved (FCoE and sup-redirect multicast) leaving six for the remainder of the multicast traffic.
- By default the switch uses the frame CoS to identify the multicast queue for a specific group.
- If more groups are mapped to one CoS group than another the system queuing for multicast may be non-optimal.
“Multicast-optimize” when enabled for a class of traffic assigns multicast fan-outs in that class to any unused CoS queues on a round robin basis.

With multicast optimization, you can assign these classes of traffic to the unused queues:

- One ‘class of service’ (CoS-based)
- IP multicast (traffic-based)
- All flood (traffic-based)

```
class-map type qos class-ip-multicast
policy-map type qos MULTICAST-OPTIMIZE
 class class-ip-multicast
 set qos-group 2
class-map type network-qos class-ip-multicast
 match qos-group 2
policy-map type network-qos MULTICAST-OPTIMIZE
 class type network-qos class-ip-multicast
 multicast-optimize
 class type network-qos class-default
system qos
 service-policy type qos input MULTICAST-OPTIMIZE
 service-policy type network-qos MULTICAST-OPTIMIZE
```
Nexus Virtualized Access Switch
Nexus 2000 Multicast Forwarding

- Nexus 2000 supports egress based Multicast replication
- Each fabric link has a list of VNTag’s associated with each Multicast group
- A single copy of each multicast frame is sent down the fabric links to the Nexus 2000
- Extended Multicast VNTag has an associated flooding fan-out on the Nexus 2000 built via IGMP Snooping
- Nexus 2000 replicates and floods the multicast packet to the required interfaces
- Note: When the fabric links are configured using static pinning each fabric link needs a separate copy of the multicast packet (each pinned group on the Nexus 2000 replicates independently)
- Port Channel based fabric links only require a single copy of the multicast packet

1. MCAST packets is received
2. MCAST frame is tagged with a unique VNTag
3. N2K ASIC has a mapping table of VNTag to IGMP Fan-Out
Agenda

- Data Center Virtualized Access — Nexus 5000 and Nexus 2000
- Nexus 5000 (N5K)
  - Hardware Architecture
  - Day in the Life of a Packet
- Nexus 2000 (N2K)
  - Virtualized/Remote Line Card
  - N2K Hardware Architecture
  - Day in the Life of a Packet
- Virtualized Access Switch (N5K + N2K)
  - Port Channel and N2K Connectivity
  - Multicast
  - QoS
- Data Center Switch—Nexus 5000 and Nexus 2000
Nexus 5000 QoS
QoS Capabilities and Configuration

- Nexus 5000 supports a new set of QoS capabilities designed to provide per system class based traffic control
  - Lossless Ethernet—Priority Flow Control (IEEE 802.1Qbb)
  - Traffic Protection—Bandwidth Management (IEEE 802.1Qaz)
  - Configuration signaling to end points—DCBX (part of IEEE 802.1Qaz)

- These new capabilities are added to and managed by the common Cisco MQC (Modular QoS CLI) which defines a three-step configuration model
  - Define matching criteria via a class-map
  - Associate action with each defined class via a policy-map
  - Apply policy to entire system or an interface via a service-policy

- Nexus 5000/7000 leverage the MQC qos-group capabilities to identify and define traffic in policy configuration
Nexus 5000 QoS
QoS Defaults

- QoS is enabled by default (not possible to turn it off)
- Four default class of services defined when system boots up
  - Two for control traffic (CoS 6 & 7)
  - One for FCoE traffic (class-fcoe – CoS 3)
  - Default Ethernet class (class-default – all others)
- Control traffic is treated as strict priority and serviced ahead of data traffic
- The two base user classes (class-fcoe and class-default) get 50% of guaranteed bandwidth by default

```bash
dc11-5020-2# sh policy-map system type qos input
Class-map (qos): class-fcoe (match-any)
 Match: cos 3
 set qos-group 1

Class-map (qos): class-default (match-any)
 Match: any
 set qos-group 0
```
Nexus 5000 QoS
QoS Policy Types

- There are three QoS policy types used to define system behavior (qos, queuing, network-qos)
- There are three policy attachment points to apply these policies to
  - Ingress interface
  - System as a whole (defines global behavior)
  - Egress interface

<table>
<thead>
<tr>
<th>Policy Type</th>
<th>Function</th>
<th>Attach Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>qos</td>
<td>Define traffic classification rules</td>
<td>system qos ingress Interface</td>
</tr>
<tr>
<td>queuing</td>
<td>Strict Priority queue</td>
<td>system qos egress Interface</td>
</tr>
<tr>
<td>network-qos</td>
<td>System class characteristics (drop or no-drop, MTU), Buffer size, Marking</td>
<td>system qos</td>
</tr>
</tbody>
</table>
Nexus 5000 QoS
UPC Buffering

- 480KB dedicated packet buffer per one 10GE port or per two FC ports

- Buffer is shared between ingress and egress with majority of buffer being allocated for ingress
  - Ingress buffering model
  - Buffer is allocated per system class
  - Egress buffer only for in flight packet absorption

- Buffer size of ingress queues for drop class can be adjusted using network-qos policy

<table>
<thead>
<tr>
<th>Class of Service</th>
<th>Ingress Buffer(KB)</th>
<th>Egress Buffer(KB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class-fcoe</td>
<td>76.8</td>
<td>18.8</td>
</tr>
<tr>
<td>User defined no-drop class of service with MTU&lt;2240</td>
<td>76.8</td>
<td>18.8</td>
</tr>
<tr>
<td>User defined no-drop class of service with MTU&gt;2240</td>
<td>81.9</td>
<td>18.8</td>
</tr>
<tr>
<td>Tail drop class of service</td>
<td>20.4</td>
<td>18.8</td>
</tr>
<tr>
<td>Class-default</td>
<td>All remaining buffer</td>
<td>18.8</td>
</tr>
</tbody>
</table>
Nexus 5000 QoS
UPC QoS Capabilities (*Ingress Policing not Currently Supported)

- Trust CoS L2/L3/L4 info with ACL
- Traffic Classification
- Ingress Policing *
- MTU checking
- Per-class Buffer usage Monitoring
  - If buffer usage crosses threshold:
    - Tail drop for drop class
    - Assert pause signal to MAC for no-drop system class
  - Truncate or drop packets if MTU is violated
  - Mark packet with CoS value
  - Strict priority + DWRR scheduling

- VoQs for unicast (8 per egress port)
- 8 multicast queues
- Egress Queues
- Marking
- Egress Scheduler
- Egress Queues

Central Scheduler
Unified Crossbar Fabric

PAUSE ON/OFF signal
Nexus 5000 QoS
Priority Flow Control and No-Drop Queues

- Nexus 5000 supports a number of new QoS concepts and capabilities
- Priority Flow Control is an extension of standard 802.3x pause frames
- No-drop queues provide the ability to support loss-less Ethernet using PFC as a per queue congestion control signaling mechanism
**Nexus 5000 QoS**

**Priority Flow Control and No-Drop Queues**

- Actions when congestion occurs depending on policy configuration
  - PAUSE upstream transmitter for lossless traffic
  - Tail drop for regular traffic when buffer is exhausted

- Priority Flow Control (PFC) or 802.3X PAUSE can be deployed to ensure lossless for application that can’t tolerate packet loss

- Buffer management module monitors buffer usage for no-drop class of service. It signals MAC to generate PFC (or link level PAUSE) when the buffer usage crosses threshold

- FCoE traffic is assigned to class-fcoe, which is a no-drop system class

- Other class of service by default have normal drop behavior (tail drop) but can be configured as no-drop
Nexus 5000 QoS
MTU per Class of Service (CoS Queue)

- MTU can be configured for each class of service (no interface level MTU)
- No fragmentation since Nexus 5000 is a L2 switch
- When forwarded using cut-through, frames are truncated if they are larger than MTU
- When forwarded using store-and-forward, frames are dropped if they are larger than MTU

```
class-map type qos iSCSI
 match cos 2
class-map type queuing iSCSI
 match qos-group 2
policy-map type qos iSCSI
 class iSCSI
 set qos-group 2
class-map type network-qos iSCSI
 match qos-group 2
policy-map type network-qos iSCSI
 class type network-qos iSCSI
 mtu 9216
system qos
 service-policy type qos input iSCSI
 service-policy type network-qos iSCSI
```

Each CoS queue on the Nexus 5000 supports a unique MTU
Nexus 5000 QoS
Mapping the Switch Architecture to ‘show queuing’

dc11-5020-4# sh queuing int eth 1/39

Interface Ethernet1/39 TX Queuing
  qos-group  sched-type oper-bandwidth
  0   WRR             50
  1   WRR             50

Interface Ethernet1/39 RX Queuing
  qos-group  0
  q-size: 243200, HW MTU: 1600 (1500 configured)
  drop-type: drop, xon: 0, xoff: 1520
  Statistics:
    Pkts received over the port : 85257
    Ucast pkts sent to the cross-bar : 930
    Mcast pkts sent to the cross-bar : 84327
    Ucast pkts received from the cross-bar : 249
    Pkts sent to the port : 133878
    **Pkts discarded on ingress** : 0
    Per-priority-pause status : Rx (Inactive), Tx (Inactive)

<snip – other classes repeated>

Total Multicast crossbar statistics:
    Mcast pkts received from the cross-bar : 283558

Packets Arriving on this port but dropped from ingress queue due to congestion on egress port
Nexus Virtualized Access Switch
Nexus 2000 QoS

- Nexus 2000 currently only supports CoS based traffic classification
- Nexus 2000 currently supports two classes of services and two queues
- The command `untagged cos` can be used to prioritize traffic from certain server interfaces
- Bandwidth allocation for traffic from FEX to Nexus 5000
  - Create new system class with `qos` and `network-qos policy-map`
  - Define queuing policy-map and apply it under fabric interface as INPUT queuing policy
- Bandwidth allocation for traffic from Nexus 5000 to Nexus 2000
  - Create new system class with `qos` and `network-qos policy-map`
  - Define queuing policy-map and apply it under system qos or fabric interface as OUTPUT queuing policy
Nexus Virtualized Access Switch
Nexus 2000 QoS

- Assign a CoS value for traffic received from high priority interfaces
- Create new system classes
- On Nexus 5000 allocate proper uplink bandwidth for new system class with input queuing policy

FEX maps class-1 to the second queue reserved for no-drop class

30% uplink bandwidth
70% uplink bandwidth
Agenda

- Data Center Virtualized Access—Nexus 5000 and Nexus 2000
- Nexus 5000 (N5K)
  - Hardware Architecture
  - Day in the Life of a Packet
- Nexus 2000 (N2K)
  - Virtualized/Remote Line Card
  - N2K Hardware Architecture
  - Day in the Life of a Packet
- Virtualized Access Switch (N5K + N2K)
  - Port Channel and N2K Connectivity
  - Multicast
  - QoS
- Data Center Switch- Nexus 5000 and Nexus 2000
Nexus 5000 and 2000 Architecture
Data Center Switch

- The functional elements of the Nexus 5000 and 2000 are familiar
  - Distributed forwarding—L2/L3 forwarding, ACL, QoS TCAM
  - Protected management and control plane
  - Non-blocking cross bar switching fabric
  - Flexible connectivity through multiple line cards

- Some new capabilities and physical form factor
  - QoS - DCB, per class MTU, no-drop queues and VoQ
  - Multiprotocol—Ethernet and FC/FCoE forwarding
  - Remote Line Cards (FEX & VNTag)
Conclusion

- You should now have a thorough understanding of the Nexus 5000 Data Center switch and the Nexus 2000 Fabric Extender packet flows, and key forwarding engine functions...

- Any questions?
Q and A
Complete Your Online Session Evaluation

- Give us your feedback and you could win fabulous prizes. Winners announced daily.
- Receive 20 Passport points for each session evaluation you complete.
- Complete your session evaluation online now (open a browser through our wireless network to access our portal) or visit one of the Internet stations throughout the Convention Center.

Don’t forget to activate your Cisco Live Virtual account for access to all session material, communities, and on-demand and live activities throughout the year. Activate your account at the Cisco booth in the World of Solutions or visit www.ciscolive.com.
Enter to Win a 12-Book Library of Your Choice from Cisco Press

Visit the Cisco Store in the World of Solutions, where you will be asked to enter this Session ID code.

Check the **Recommended Reading** brochure for suggested products available at the Cisco Store.