Using packet-tracer, capture and other Cisco ASA tools for network troubleshooting

Oleg Tipisov
Customer Support Engineer, Cisco TAC

Jan, 2014. Revision 1.0
Cisco Public
Сегодня на семинаре эксперт Cisco ТАС Олег Типисов приведет примеры использования различных возможностей и диагностических средств Cisco ASA для решения проблем, возникающих при передаче трафика.

Олег Типисов
Инженер центра технической поддержки Cisco ТАС в Москве
Спасибо, что посетили наш семинар сегодня

Сегодняшняя презентация включает опросы аудитории
Пожалуйста, участвуйте!
Скачать презентацию вы можете по ссылке:

https://supportforums.cisco.com/docs/DOC-39468
Присылайте Ваши вопросы!

Используйте Q&A панель, чтобы послать вопрос. Наши эксперты ответят на них
Introduction

- Which pill would you choose, red or blue?

You take the blue pill - the story ends, you wake up in your bed and believe whatever you want to believe.

You take the red pill - you stay in Wonderland, and I show you how deep the rabbit hole goes.
Agenda

• ASA Software Architecture
• Packet Tracer
• Packet Capture
• TCP Ping
• Case Study: Infected Local Host
• Resource Management
• Monitoring Resource Utilization
• Conclusion
ASA Software Architecture
Terminology

• **Data Path (DP)** – Process “thru-the-box” packets
• **Control Point (CP)** – Handle “to-the-box” packets and also the console
• CP handles all of the configuration and management as well as some network protocols like ARP and routing
• Most of the code-base is CP related, but most of the cycles on the box are in the DP
• Data Path is a separate thread within the ASA process
• Data Path is “flow based”, with a distinct flow-creation path (the slow-path) and a fast-path for packets on existing flows
• The combination of the fast-path and the slow-path is known as Accelerated Security Path
History

• In the 6.x days the Data Path was mixed in with the Control Point code, and there was no separation between the flow-setup path and the fast-path.

• The FWSM team took the 6.0 code, and forked development creating a separate Data Path that ran on IBM network processors (NP), while still using the rest of the PIX code as the Control Point.

• For 7.0 (ASA), we merged with the FWSM code creating a new Data Path that emulated their NP code, which we called the SoftNP.
History

• **SoftNP** was designed as a portable 32-bit / 64-bit Data Path with a well defined API (NP-API)

• Control Point code should not directly access SoftNP data structures and vice-versa. All communication should be done through the NP-API

• Designed from the ground up to be high-performance and scalable

• Many features were added over the old 6.x Data Path (e.g. virtual firewalls, IPv6, transparent firewalls, etc.)
ASA Software Architecture

- Exception Path
 (e.g. complex inspects)

- Slow Path
 (flow creation)

- Fast Path

- Load Balancer

- Control Point
 (runs on a single core at a time)

- Data Path
 (runs on multiple cores)
 (aka Accelerated Security Path – ASP)

- NP-API

- NIC Driver
SMP Architecture

Control Point Thread

Core 0 Data Path Thread
Core 1 Data Path Thread
Core 2 Data Path Thread
Core 3 Data Path Thread
Core 4 Data Path Thread
Core 5 Data Path Thread
Core 6 CP Thread
Core 7 Data Path Thread

Network Interface Ring 1
Network Interface Ring 2
... Network Interface Ring N
SMP Platforms

- The first SMP platform was ASA5580 (ASA5580-20, ASA5580-40)
- All modern ASA platforms are SMP platforms
 - ASA5585 SSP-10, SSP-20, SSP-40, SSP-60
- All of them run -smp- image (e.g. asa913-2-smp-k8.bin)
- But only one CPU core is available to ASA software on low-end devices and the rest is dedicated to IPS or CX software module
 - ASA5512-X – ASA5545-X
- Example:

 Hardware: ASA5545, 12288 MB RAM, CPU Lynnfield 2660 MHz, 1 CPU (8 cores)
 ASA: 6144 MB RAM, 1 CPU (1 core)
SMP Platforms (from “show version”)

<table>
<thead>
<tr>
<th>Model</th>
<th>CPU</th>
<th>ASA Cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>5512-X</td>
<td>Clarkdale 2793 MHz 1 CPU (2 cores)</td>
<td>1 CPU (1 core)</td>
</tr>
<tr>
<td>5515-X</td>
<td>Clarkdale 3059 MHz, 1 CPU (4 cores)</td>
<td>1 CPU (1 core)</td>
</tr>
<tr>
<td>5525-X</td>
<td>Lynnfield 2393 MHz, 1 CPU (4 cores)</td>
<td>1 CPU (1 core)</td>
</tr>
<tr>
<td>5545-X</td>
<td>Lynnfield 2660 MHz, 1 CPU (8 cores)</td>
<td>1 CPU (1 core)</td>
</tr>
<tr>
<td>5555-X</td>
<td>Lynnfield 2792 MHz, 1 CPU (8 cores)</td>
<td>1 CPU (2 cores)</td>
</tr>
<tr>
<td>5580-20</td>
<td>AMD Opteron 2600 MHz, 2 CPUs (4 cores)</td>
<td>ALL</td>
</tr>
<tr>
<td>5580-40</td>
<td>AMD Opteron 2600 MHz, 4 CPUs (8 cores)</td>
<td>ALL</td>
</tr>
<tr>
<td>5585 SSP-10</td>
<td>Xeon 5500 series 2000 MHz, 1 CPU (4 cores)</td>
<td>ALL</td>
</tr>
<tr>
<td>5585 SSP-20</td>
<td>Xeon 5500 series 2133 MHz, 1 CPU (8 cores)</td>
<td>ALL</td>
</tr>
<tr>
<td>5585 SSP-40</td>
<td>Xeon 5500 series 2133 MHz, 2 CPUs (16 cores)</td>
<td>ALL</td>
</tr>
<tr>
<td>5585 SSP-60</td>
<td>Xeon 5600 series 2400 MHz, 2 CPUs (24 cores)</td>
<td>ALL</td>
</tr>
</tbody>
</table>

Note: Cores are not really “cores”. They’re “threads”. For example, SSP-20 runs on Xeon L5518 4C/8T
ASA Troubleshooting Tools
Packet Tracer
Packet Tracer

• A packet can be traced by
 • Defining packet characteristics via ASA CLI
 • Capturing packets using trace option
• In both cases a packet, tagged with the trace option, is injected into the specified interface and processed in data path
• This packet is real and can be captured on the interface by the “capture” tool
• Each “action” taken on the packet is recorded
• When the packet reaches egress interface, or is dropped, it is punted to the control plane
• The control plane reads and displays the actions taken on the packet, along with the associated lines in the configuration
Tracing Packets from CLI

• Packet tracer is useful for both configuration testing and troubleshooting of packet forwarding issues

• It is a primary tool to test ACLs and NAT configuration

• Packet tracer is not a traffic generator: packet payload is empty, only basic packet characteristics can be defined

• “detailed” option can be used to display ASP classification rules for the packet

```
packet-tracer input <interface> {tcp | udp | icmp | rawip} <source> <destination> [detailed | xml]
```
Packet Tracer Example

- In this example we will trace the packet from outside host 195.1.1.1 to SMTP server 192.0.2.1 (172.16.1.2) in DMZ
- Relevant parts of configuration are shown below

```plaintext
object network obj-172.16.1.2
  host 172.16.1.2

object service SMTP
  service tcp source eq smtp

nat (dmz, outside) source static obj-172.16.1.2 interface service SMTP SMTP

access-list outside_in extended permit tcp any host 172.16.1.2 eq smtp
access-group outside_in in interface outside

access-list ips_for_dmz extended permit tcp any host 172.16.1.2 eq smtp

class-map ips_for_dmz
  match access-list ips_for_dmz

policy-map outside_policy
  class ips_for_dmz
    ips inline fail-open

service-policy outside_policy interface outside
```
Packet Tracer Example

- **Capture** was configured to verify that packet-tracer generates real packet

```bash
ASA/C1# packet-tracer input outside tcp 195.1.1.1 1234 192.0.2.1 25 detail

Phase: 1
Type: CAPTURE
Subtype: 
Result: ALLOW
Config: 
Additional Information:
Forward Flow based lookup yields rule:
in id=0x7ffe60593830, priority=13, domain=capture, deny=false
  hits=1, user_data=0x7ffe6056b090, cs_id=0x0, l3_type=0x0
  src mac=0000.0000.0000, mask=0000.0000.0000
  dst mac=0000.0000.0000, mask=0000.0000.0000
  input_ifc=outside, output_ifc=any

show asp table classify interface outside domain capture
show capture
```

Information displayed here is not correct
Packet Tracer Example

- “show capture” can be used to display the packet

```
ASA/C1# show capture
capture cap-out type raw-data interface outside [Capturing – 74 bytes]
   match tcp host 195.1.1.1 host 192.0.2.1

ASA/C1# show capture cap-out detail
1 packet captured

   1: 12:59:15.179586 0000.0000.0000 503d.e59d.8997 0x8100 Length: 58
     802.1Q vlan#76 P0 195.1.1.1.1234 > 192.0.2.1.25: S [tcp sum ok]
     914040549:914040549(0) win 8192 (ttl 255, id 35455)
```
Packet Tracer Example

- **MAC ACL** is used by default in routed firewall mode to allow only IPv4, IPv6 and ARP traffic

```
ASA/C1# packet-tracer input outside tcp 195.1.1.1 1234 192.0.2.1 25 detail

Phase: 2
Type: ACCESS-LIST
Subtype: 
Result: ALLOW
Config: 
Implicit Rule
Additional Information: 
Forward Flow based lookup yields rule: 
in id=0x7ffe5f45b930, priority=1, domain=permit, deny=false 
  hits=61, user_data=0x0, cs_id=0x0, 13_type=0x8
  src mac=0000.0000.0000, mask=0000.0000.0000
  dst mac=0000.0000.0000, mask=0100.0000.0000
  input_ifc=outside, output_ifc=any

show asp table classify interface outside domain permit [hits]
```

Bytes are swapped here:
- 0x08 is 0x0800 = IPv4
- 0x608 is 0x0806 = ARP
- 0xdd86 is 0x86dd = IPv6

This rule is about IPv4 unicast
Packet Tracer Example

• **UN-NAT** changes destination IP from 192.0.2.1 to 172.16.1.2 and diverts the packet to DMZ interface ignoring routing table

```
ASA/C1# packet-tracer input outside tcp 195.1.1.1 1234 192.0.2.1 25 detail

Phase: 3
Type: UN-NAT
Subtype: static
Result: ALLOW
Config:
nat (dmz, outside) source static obj-172.16.1.2 interface service SMTP SMTP
Additional Information:
NAT divert to egress interface dmz
Untranslate 192.0.2.1/25 to 172.16.1.2/25
```

• NAT on ASA is overloaded with functions: NAT, “policy-based” routing (NAT divert), security (NAT RPF check). In case of a conflict between NAT divert and routing you would see:

```
%ASA-6-110003: Routing failed to locate next hop for TCP from <nameif>:<IP>/<port> to <nameif>:<IP>/<port>
```
Packet Tracer Example

- **IPv4 access-list** is required to allow traffic from outside to DMZ
- Note that **real IP** (172.16.1.2) should be specified in outside ACL in 8.3+, because UN-NAT is performed before ACL check

```
ASA/C1# packet-tracer input outside tcp 195.1.1.1 1234 192.0.2.1 25 detail

Phase: 4
Type: ACCESS-LIST
Subtype: log
Result: ALLOW
Config:
access-group outside_in in interface outside
access-list outside_in extended permit tcp any host 172.16.1.2 eq smtp

Additional Information:
Forward Flow based lookup yields rule:
in id=0x7ffe6055b390, priority=13, domain=permit, deny=false
hits=0, user_data=0x7ffe559729c0, cs_id=0x0, use_real_addr, flags=0x0, protocol=6
src ip/id=0.0.0.0, mask=0.0.0.0, port=0, tag=0
dst ip/id=172.16.1.2, mask=255.255.255.255, port=25, tag=0, dscp=0x0
input_ifc=outside, output_ifc=any
```

- show access-list
- show asp table classify interface outside domain permit [hits]
Packet Tracer Example

- We have a rule in NAT ASP classification table, but source IP is not changed by NAT in this case

```
ASA/Cl# packet-tracer input outside tcp 195.1.1.1 1234 192.0.2.1 25 detail

Phase: 5
Type: NAT
Subtype:
Result: ALLOW
Config:

nat (dmz,outside) source static obj-172.16.1.2 interface service SMTP SMTP

Additional Information:
Static translate 195.1.1.1/1234 to 195.1.1.1/1234
Forward Flow based lookup yields rule:
  in id=0x7ffe6056c980, priority=6, domain=nat, deny=false
    hits=14, user_data=0x7ffe60541160, cs_id=0x0, flags=0x0, protocol=6
     src ip/id=0.0.0.0, mask=0.0.0.0, port=0, tag=0
     dst ip/id=192.0.2.1, mask=255.255.255.255, port=25, tag=0, dscp=0x0
   input_ifc=outside, output_ifc=dmz
```
Packet Tracer Example

• **Per-session PAT** is a new 9.0 feature created for clustering

• It can also be very useful to improve PAT scalability in non-clustering configurations (more on this later)

• It applies to dynamic PAT only

```
ASA/C1# packet-tracer input outside tcp 195.1.1.1 1234 192.0.2.1 25 detail

Phase: 6
Type: NAT
Subtype: per-session
Result: ALLOW
Config:
Additional Information:
Forward Flow based lookup yields rule:
in  id=0x7ffe5ff158b0, priority=0, domain=nat-per-session, deny=false
    hits=27, user_data=0x0, cs_id=0x0, reverse, use_real_addr, flags=0x0, protocol=6
    src ip/id=0.0.0.0, mask=0.0.0.0, port=0, tag=0
    dst ip/id=0.0.0.0, mask=0.0.0.0, port=0, tag=0, dscp=0x0
    input_ifc=any, output_ifc=any

show asp table classify domain nat-per-session
show run all xlate

“false” means that per-session PAT is enabled for the flow:
xlate per-session permit tcp any4 any4
```
Packet Tracer Example

- RSVP and IGMP packets with **IP options** are allowed by default
- We hit implicit deny rule here, but our packet doesn’t have any IP options and is allowed to go
- Use “show run all policy-map” to learn more

ASA/C1# packet-tracer input outside tcp 195.1.1.1 1234 192.0.2.1 25 detail

Phase: 7
Type: IP-OPTIONS
Subtype:
Result: ALLOW
Config:
Additional Information:
Forward Flow based lookup yields rule:
 in id=0x7ffe5f4617e0, priority=0, domain=inspect-ip-options, deny=true
 hits=797, user_data=0x0, cs_id=0x0, reverse, flags=0x0, protocol=0
 src ip/id=0.0.0.0, mask=0.0.0.0, port=0, tag=0
 dst ip/id=0.0.0.0, mask=0.0.0.0, port=0, tag=0, dscp=0x0
 input_ifc=outside, output_ifc=any

show service-policy inspect ip-options
show asp table classify domain inspect-ip-options
Packet Tracer Example

- **SMTP inspection** is enabled by default
- Use “show run all policy-map _default_esmtp_map” to learn more

ASA/C1# packet-tracer input outside tcp 195.1.1.1 1234 192.0.2.1 25 detail

Phase: 8
Type: INSPECT
Subtype: inspect-smtp
Result: ALLOW
Config:
class-map inspection_default
 match default-inspection-traffic
policy-map global_policy
 class inspection_default
 inspect esmtp _default_esmtp_map
service-policy global_policy global

Additional Information:
Forward Flow based lookup yields rule:
in id=0x7ffe5ff26d40, priority=70, domain=inspect-smtp, deny=false
 hits=14, user_data=0x7ffe6019d910, cs_id=0x0, use_real_addr, flags=0x0, protocol=6
 src ip/id=0.0.0.0, mask=0.0.0.0, port=0, tag=0
 dst ip/id=0.0.0.0, mask=0.0.0.0, port=25, tag=0, dscp=0x0
 input_ifc=outside, output_ifc=any

show service-policy inspect esmtp
show asp table classify domain inspect-smtp
Packet Tracer Example

- IPS can be configured in inline or promiscuous mode
- Traffic, generated by packet-tracer, is not sent to IPS for analysis
- Real traffic is processed in a very specific way (more on this later)
- IPS rules should use real IP 172.16.1.2 since 8.3

ASA/Cl# packet-tracer input outside tcp 195.1.1.1 1234 192.0.2.1 25 detail

Phase: 9
Type: IDS
Subtype:
Result: ALLOW
Config:
Additional Information:
Forward Flow based lookup yields rule:
in id=0x7ffe6056f6a0, priority=51, domain=ids, deny=false
 hits=1, user_data=0x7ffe605d78a0, cs_id=0x0, use_real_addr, flags=0x0, protocol=6
 src ip/id=0.0.0.0, mask=0.0.0.0, port=0, tag=0
 dst ip/id=172.16.1.2, mask=255.255.255.255, port=25, tag=0, dscp=0x0
input_ifc=outside, output_ifc=any

show service-policy [ips]

show asp table classify domain ids
Packet Tracer Example

- **NAT RPF check** verifies that forward and reverse traffic hits the same NAT rule

```
ASA/C1# packet-tracer input outside tcp 195.1.1.1 1234 192.0.2.1 25 detail

Phase: 10
Type: NAT
Subtype: rpf-check
Result: ALLOW
Config:
    nat (dmz, outside) source static obj-172.16.1.2 interface service SMTP SMTP
Additional Information:
   Forward Flow based lookup yields rule:
       out id=0x7ffe6056cd30, priority=6, domain=nat-reverse, deny=false
           hits=14, user_data=0x7ffe591ccec0, cs_id=0x0, use_real_addr, flags=0x0, protocol=6
       src ip/id=0.0.0.0, mask=0.0.0.0, port=0, tag=0
       dst ip/id=172.16.1.2, mask=255.255.255.255, port=25, tag=0, dscp=0x0
       input_ifc=outside, output_ifc=dmz
```

- It’s a security mechanism that prevents outside hosts to reach inside host directly, bypassing NAT (remember that ACLs in 8.3 and above are configured to permit traffic to **real IP**).
Packet Tracer Example

- NAT RPF is a very complicated subject
- ASA behavior has changed several times
- The following syslog message can be produced if RPF check fails

%ASA-5-305013: Asymmetric NAT rules matched for forward and reverse flows; Connection for icmp src outside:195.1.1.1 dst inside:10.1.1.2 (type 8, code 0) denied due to NAT reverse path failure
Packet Tracer Example

- **Flow is created** and immediately torn down, syslog messages are generated
- Note that real ESMTP traffic would be punted to CP for inspection

```bash
ASA/C1# packet-tracer input outside tcp 195.1.1.1 1234 192.0.2.1 25 detail

Phase: 13
Type: FLOW-CREATION
Subtype: 
Result: ALLOW
Config: 
Additional Information: 
New flow created with id 2227, packet dispatched to next module
Module information for forward flow ...
snp_fp_tracer_drop
snp_fp_inspect_ip_options
snp_fp_tcp_normalizer
snp_fp_punt <inspect_esmtp>
snp_fp_translate
snp_ids
snp_fp_tcp_normalizer
snp_fp_adjacency
snp_fp_fragment
snp_ifc_stat
```

```bash
show conn [long]
show xlate
```
Packet Tracer Example

• Information about reverse flow is also displayed

• Reverse flow steps #11, #12 were omitted for brevity

Module information for reverse flow ...
snp_fp_tracer_drop
snp_fp_inspect_ip_options
snp_fp_tcp_normalizer
snp_fp_translate
snp_fp_punt <inspect_esmtpe>
snp_ids
snp_fp_tcp_normalizer
snp_fp_adjacency
snp_fp_fragment
snp_ifc_stat
Packet Tracer Example

• Final **result** is shown here

```
ASA/C1# packet-tracer input outside tcp 195.1.1.1 1234 192.0.2.1 25 detail

Result:
input-interface: outside
input-status: up
input-line-status: up
output-interface: dmz
output-status: up
output-line-status: up
Action: allow
```

• Syslog messages:

```
%ASA-6-302013: Built inbound TCP connection 2227 for outside:195.1.1.1/1234 (195.1.1.1/1234) to dmz:172.16.1.2/25 (192.0.2.1/25)

%ASA-6-302014: Teardown TCP connection 2227 for outside:195.1.1.1/1234 to dmz:172.16.1.2/25 duration 0:00:00 bytes 0 Free the flow created as result of packet injection
```
Packet Tracer Limitations and Restrictions

- Packet, generated by packet-tracer, is not sent to either ASA L7 inspection engines or IPS module, “show service-policy” stats not updated

- Packet tracer cannot be used to do VPN tracing in outside to inside direction

- Packet tracer is not supported in transparent mode

- Not all packet processing steps are shown (e.g. normalizer)

- Packet tracer cannot be run from system context to test multicontext classifier, but it can be run from user contexts to test context security policy
Packet Tracer and “acl-drop” Drop Code

- Sometimes it could be difficult to diagnose a problem looking just at the packet-tracer output. Simple example:

```bash
ASA/C1# packet-tracer input outside tcp 195.1.1.1 1234 192.0.2.1 139 detail

Phase: 3
Type: ROUTE-LOOKUP
Subtype: input
Result: ALLOW
Config:
Additional Information:
in 192.0.2.1 255.255.255.255 identity

Here we connect from outside to ASA outside IP 192.0.2.1, but PAT for port TCP/139 is not configured.
Packet is routed to “identity” interface, which is ASA itself...

Phase: 5
Type: ACCESS-LIST
Result: DROP
Implicit Rule
Additional Information:
Forward Flow based lookup yields rule:
in id=0x7ffe5f45ca40, priority=0, domain=permit, deny=true
  hits=11, user_data=0x9, cs_id=0x0, use_real_addr, flags=0x1000, protocol=0
  src ip/id=0.0.0.0, mask=0.0.0.0, port=0, tag=0
  dst ip/id=0.0.0.0, mask=0.0.0.0, port=0, tag=0, dscp=0x0
  input_ifc=outside, output_ifc=any

...and is dropped by implicit drop rule. This is fine, but the problem is that “acl-drop” code is a generic drop code used in many different situations.

Drop-reason: (acl-drop) Flow is denied by configured rule
```
Packet Tracer and “acl-drop” Drop Code

• Sometimes syslog messages can help differentiate between different drop reasons. In this case we see:

```
%ASA-7-710005: TCP request discarded from 195.1.1.1/1234 to outside:192.0.2.1/139
```

• And adding “permit ip any any” line into interface ACL doesn’t change behavior, since interface ACL doesn’t control access to ASA itself

• Should we try to connect to port TCP/21 (which has valid PAT rule configured) we would see...

```
%ASA-4-106023: Deny tcp src outside:195.1.1.1/1234 dst inside:172.16.1.3/21 by access-group "outside_in"
```

• …if such traffic is dropped by implicit deny rule in interface ACL

• ASP drop code would be the same: acl-drop
Packet Capture
Packet Capture

• Capture types

ASA/C1# capture cap-out type ?

 asp-drop Capture packets dropped with a particular reason
 isakmp Capture encrypted and decrypted ISAKMP payloads
 raw-data Capture inbound and outbound packets on one or more interfaces
 tls-proxy Capture decrypted inbound and outbound data from TLS Proxy on one or more interfaces

• ISAKMP capture can be useful for IPSec troubleshooting. ASA adds decrypted IKEv1 or IKEv2 packets to the capture and they can be decoded in Wireshark (this is beyond the scope of this presentation)

• ASP drop capture can be used to capture dropped packets

• The default type is “raw-data”, which allows capturing on ASA Ethernet interfaces, ASA-IPS control-plane interface, etc.
Packet Capture

- Traffic can be captured both before and after it passes through the firewall; one capture on the inside interface, one capture on the outside interface

- Ingress packets are captured before any packet processing has been done on them

- Egress packets are captured after all processing (excluding L2 source MAC rewrite)

- “nameif” needs to be configured on a interface to capture on it (which means you cannot capture on Ethernet interfaces in system context in multiple context mode)

- Do not use capture on heavily-loaded SMP systems! There is a risk of high CPU!
Packet Capture

- Capture buffer saved in RAM (default size is 512 KB)
- Default is to stop capturing when the buffer is full
- Default packet length is 1518 bytes
- Jumbo frames are supported (up to 9216 bytes)
- “real-time” option can be used to display captured packets on the screen in real time (not recommended)
Packet Capture

- Capture is bidirectional if capture filter is configured in the command ("match …")
- Capture is unidirectional if an ACL is used as a capture filter
- Don’t use “any” in ACL in 9.0 or newer versions as “any” means “any4 + any6”. In 9.0 we implemented “Unified ACLs for IPv4 and IPv6”. The diagnostics will be:

 ERROR: Capture doesn't support access-list <CAPTURE1> containing mixed policies

- The “match” keyword can be used up to three times in the capture command

```
capture cap-out [buffer <bytes>] [circular-buffer] [packet-length <bytes>] [headers-only] interface <name> [real-time] {access-list <name> | match <capture-filter> …}
```
Packet Capture

• Verify if packets are captured:

 \texttt{ASA/C1\# \textit{show capture}}

• Display packets (similar to tcpdump)

 \texttt{ASA/C1\# \textit{show capture cap-out [detail | dump] ...}}

• Several other options are available, but they are rarely used
Packet Capture

• Copy capture off the box via TFTP or FTP

• It can also be saved to disk0: if the server is unavailable

• In multiple context mode “copy” command is available in system context only (it uses admin context IP for copying)

• In single mode use:

 \[ASA# \text{copy} \ /\text{pcap} \ \text{capture:cap-out} \ \text{tftp://<IP>/cap-out.pcap}\]

• In multiple context mode use:

 \[ASA# \text{copy} \ /\text{pcap} \ \text{capture:C1/cap-out} \ \text{tftp://<IP>/cap-out.pcap}\]
Packet Capture

• Clear capture buffer to restart capture:

ASA/C1# clear capture cap-out

• Don’t forget to turn capture off when done:

ASA/C1# no capture cap-out
Packet Capture

• Contrary to popular belief (and documentation) this tool can be used to capture ARP packets

ASA/C1# capture cap1 int outside ethernet-type arp

ASA/C1# show capture cap1

2 packets captured

1: 20:16:50.476156 802.1Q vlan#76 P0 arp who-has 192.0.2.2 tell 192.0.2.1
2: 20:16:50.476690 802.1Q vlan#76 P0 arp reply 192.0.2.2 is-at 0:13:7f:3d:bd:1

• “show arp” and “show arp statistics” can also be used for ARP troubleshooting

ASA/C1# show arp statistics

 Number of ARP entries in ASA: 1

 Dropped blocks in ARP: 0
 Maximum Queued blocks: 3
 Queued blocks: 0
 Interface collision ARPs Received: 0
 ARP-defense Gratuitous ARPs sent: 0
 Total ARP retries: 14
 Unresolved hosts: 0
 Maximum Unresolved hosts: 1
Tracing Captured Packet

• Capture tool can record what actions were taken on a data packet in Accelerated Security Path

• This information is stored in trace buffers when the packet is processed

• The maximum number of buffers is 1000, the default is 50 for each capture

• “detail” option can be used to record more information about packet processing

• Unlike packet-tracer, this tool can be used to trace SYN and non-SYN packets, although information collected about non-SYN packets is very limited
Tracing Captured Packet Example

• Create a capture using the trace option

ASA/C1# capture cap-out trace detail trace-count 10 interface outside match tcp any host 192.0.2.1 eq 25

• Send traffic and verify that packets are captured

ASA/C1# show capture
capture cap-out type raw-data trace detail trace-count 10 interface outside [Capturing - 152 bytes]
 match tcp any host 192.0.2.1 eq smtp

• Display captured packets

ASA/C1# show capture cap-out

2 packets captured

 1: 21:21:30.236300 802.1Q vlan#76 P0 195.1.1.1.58135 > 192.0.2.1.25: S
 2825729494:2825729494(0) win 4128 <mss 1460>
 2: 21:21:30.236926 802.1Q vlan#76 P0 192.0.2.1.25 > 195.1.1.1.58135: R 0:0(0) ack
 2825729495 win 0

2 packets shown
Tracing Captured Packet Example

- Display information collected during packet processing
- The output looks the same as packet-tracer output

ASA/C1# show capture cap-out trace packet-number 1

2 packets captured

 1: 21:21:30.236300 802.1Q vlan#76 P0 195.1.1.1.58135 > 192.0.2.1.25: S
 2825729494:2825729494(0) win 4128 <mss 1460>

Phase: 1
Type: CAPTURE
...
Phase: 2
Type: ACCESS-LIST
...
Phase: 8
Type: INSPECT
...
Phase: 9
Type: IDS
...
Phase: 13
Type: FLOW-CREATION

Note that counters increment in:

show service-policy inspect esmtp
show service-policy ips

This makes sense. Unlike packet-tracer, this is a real traffic and hence all ASP processing is real.
Tracing Captured Packet Example

- In this test, traffic was sent to IPS and dropped by a custom signature there, but the trace result is still “allow”:

```plaintext
Phase: 9
Type: IDS
Subtype:
Result: ALLOW

Result:
output-interface: dmz
output-status: up
output-line-status: up
Action: allow

signature: description=Drop all ESMTP traffic id=60000 created=20000101 type=other
version=custom

actions:
deniedPacket: true
deniedFlow: true
tcpOneWayResetSent: true
```
Tracing Captured Packet Example

• This is expected

• ASA only shares the copy of a packet with the inline IPS and requests the module to indicate its action (such as deny packet or reset TCP connection)

• While the module is coming up with the decision, all other packet processing tasks continue normally

• Before sending the packet out, the IPS decision is considered among other things

• Packet Tracing does not support this deferred decision logic, so the IDS phase will always be an "allow", although the packet can be dropped

• What this means is that capture on ingress and egress ASA interfaces usually needs to be configured to make sure that traffic is either dropped or passed through the ASA
ASA – IPS Interactions

<table>
<thead>
<tr>
<th>IPS Module</th>
<th>ASA Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>deny-connection-inline</td>
<td>%ASA-4-420002: IPS requested to drop TCP packet from ... to ...</td>
<td>Teardown TCP connection ... Flow terminated by IPS</td>
</tr>
<tr>
<td>deny-packet-inline</td>
<td>%ASA-4-420002: IPS requested to drop ICMP packet from ... to ...</td>
<td></td>
</tr>
<tr>
<td>reset-tcp-connection</td>
<td>%ASA-4-420003: IPS requested to reset TCP connection from ... to ...</td>
<td>Teardown TCP connection ... Flow reset by IPS</td>
</tr>
<tr>
<td>deny-attacker-inline</td>
<td>%ASA-4-420002: IPS requested to drop TCP packet from ... to ...</td>
<td>Teardown TCP connection ... Flow terminated by IPS</td>
</tr>
</tbody>
</table>

- **ASP drop counters are incremented on ASA:**

```markdown
table
<table>
<thead>
<tr>
<th>Frame drop:</th>
<th>Flow drop:</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPS Module requested drop (ips-request)</td>
<td>Flow terminated by IPS (ips-request)</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
```

© 2013 Cisco and/or its affiliates. All rights reserved.
ASA – IPS Interactions

• Of course, list of “denied attackers” is kept on IPS module and is used by IPS module to drop future packets coming from the attacker IP or IP and source/destination port combinations
 • deny-attacker-inline
 • deny-attacker-service-pair-inline
 • deny-attacker-victim-pair-inline

```
sensor# show statistics denied-attackers

Statistics for Virtual Sensor vs0
  Denied Attackers and hit count for each.
  195.1.1.1 = 4

ASA: %ASA-4-420002: IPS requested to drop TCP packet from ... to ...
```

• IPS module does not execute “shun” commands on ASA by default, but this can be configured
 • request-block-host
 • request-block-connection
Tracing Captured Packet Example

- It’s possible to trace non-SYN packets, but note that very limited information is collected about them:

ASA/C1# show capture cap-out trace packet-number 5

Phase: 3
Type: FLOW-LOOKUP
Subtype:
Result: ALLOW
Config:
Additional Information:
Found flow with id 262421, using existing flow
Module information for forward flow ...
snp_fp_inspect_ip_options
snp_fp_tcp_normalizer
snp_fp_translate
snp_fp_adjacency
snp_fp_fragment
snp_ifc_stat

Module information for reverse flow ...

Result:
Action: allow
ASP Drop Capture

ASA/C1# capture cap1 type asp-drop {all | <specific-ASP-drop-code>}

- ASP Drop capture is used to capture packets dropped in Accelerated Security Path
- This capture can be run from both user context and system context
- If it is run from system context, all packets, dropped in user contexts, are captured
- Neither “access-list”, nor “match” filtering options work in ASP drop capture
TCP Ping
TCP ping

- Sources **TCP SYN** packet with *Client’s IP* and injects it into *Client’s interface* of the ASA
TCP ping

- Validates 2 of the 3 legs of the connection from client to server
TCP Ping Example

ASA/C1# ping tcp <input-interface> <destination-IP> <destination-port> source <source-IP> <source-port> repeat <number-of-packets> timeout <timeout>

ASA/C1# ping tcp inside 195.1.1.1 23 source 10.1.1.2 1234 repeat 1

Type escape sequence to abort.
Sending 1 TCP SYN requests to 195.1.1.1 port 23 from 10.1.1.2 starting port 1234, timeout is 2 seconds:
Success rate is 100 percent (1/1), round-trip min/avg/max = 2/2/2 ms

- ASA sends TCP RST to both IPs to terminate TCP connections at the end
Опрос #1
Опрос #1: если бы было нужно оставить на ASA только несколько фич, выкинув все остальные, то какие бы вы оставили из списка. Выберите 4 варианта из 9.

- NAT
- Identity Firewall (интеграция с AD Agent)
- Cloud Web Security (ScanSafe)
- Botnet Traffic Filtering
- Модуль IPS (аппаратный или программный в ASA5500-X)
- Модуль CX (аппаратный или программный в ASA5500-X)
- IPv6
- Clientless WebVPN
- ASA 9.0 Clustering
Case Study: Infected Local Host
Case Study: Infected Local Host

- Problem: The number of connections and xlates is little bit higher than usual during non-working hours
- There are no syslog messages at level 3 (errors)
- ASDM graphs do not show abnormal activity
- Threat Detection Statistics is not supported in multiple context mode (except TCP Intercept Statistics) and cannot be enabled

ASA/C1# show conn count
13648 in use, 13655 most used

ASA/C1# show xlate count
27682 in use, 27686 most used

ASA/C1# show nat pool
TCP PAT pool outside: PAT-POOL, address 192.0.2.12, range 1-511, allocated 0
TCP PAT pool outside: PAT-POOL, address 192.0.2.12, range 512-1023, allocated 0
TCP PAT pool outside: PAT-POOL, address 192.0.2.12, range 1024-65535, allocated 27653
TCP PAT pool outside, address 192.0.2.1, range 1-511, allocated 2
TCP PAT pool outside, address 192.0.2.1, range 512-1023, allocated 0
TCP PAT pool outside, address 192.0.2.1, range 1024-65535, allocated 0
Case Study: Infected Local Host

- Always look at the perfmon statistics first

<table>
<thead>
<tr>
<th>Command</th>
<th>Context: C1</th>
<th>Current</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>show perfmon</td>
<td>Xlates</td>
<td>326/s</td>
<td>1/s</td>
</tr>
<tr>
<td>show perfmon</td>
<td>Connections</td>
<td>326/s</td>
<td>3/s</td>
</tr>
<tr>
<td>show perfmon</td>
<td>TCP Conns</td>
<td>326/s</td>
<td>3/s</td>
</tr>
<tr>
<td>show perfmon</td>
<td>UDP Conns</td>
<td>0/s</td>
<td>0/s</td>
</tr>
<tr>
<td>show perfmon</td>
<td>URL Access</td>
<td>0/s</td>
<td>0/s</td>
</tr>
<tr>
<td>show perfmon</td>
<td>URL Server Req</td>
<td>0/s</td>
<td>0/s</td>
</tr>
<tr>
<td>show perfmon</td>
<td>TCP Fixup</td>
<td>0/s</td>
<td>0/s</td>
</tr>
<tr>
<td>show perfmon</td>
<td>TCP Intercept Established Conns</td>
<td>0/s</td>
<td>0/s</td>
</tr>
<tr>
<td>show perfmon</td>
<td>TCP Intercept Attempts</td>
<td>0/s</td>
<td>0/s</td>
</tr>
<tr>
<td>show perfmon</td>
<td>TCP Embryonic Conns Timeout</td>
<td>212/s</td>
<td>3/s</td>
</tr>
<tr>
<td>show perfmon</td>
<td>HTTP Fixup</td>
<td>0/s</td>
<td>0/s</td>
</tr>
<tr>
<td>show perfmon</td>
<td>FTP Fixup</td>
<td>0/s</td>
<td>0/s</td>
</tr>
<tr>
<td>show perfmon</td>
<td>AAA Authen</td>
<td>0/s</td>
<td>0/s</td>
</tr>
<tr>
<td>show perfmon</td>
<td>AAA Author</td>
<td>0/s</td>
<td>0/s</td>
</tr>
<tr>
<td>show perfmon</td>
<td>AAA Account</td>
<td>0/s</td>
<td>0/s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TCP Intercept</th>
<th>Current</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup Rates</td>
<td>N/A</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

Most TCP connections fail to establish.

This needs to be investigated.

Note that this statistics is collected even if TCP Intercept is not enabled on ASA.
Case Study: Infected Local Host

- Do we have hosts with high number of embryonic TCP connections?

```
ASA/C1# show local-host brief conn embryonic 100
```

Interface inside: 0 active, 0 maximum active, 0 denied
Interface outside: 13528 active, 43750 maximum active, 0 denied
Interface dmz: 1 active, 3 maximum active, 0 denied

- Hmm… This looks strange at first…

- We see a server in DMZ and 13K outside hosts, but none of them has more than 100 embryonic connections…
• Take a look at the traffic load

ASA/C1# show traffic

d mz:

received (in 208.540 secs):
 67334 packets 2693402 bytes
 322 pkts/sec 12915 bytes/sec

transmitted (in 208.540 secs):
 8 packets 236 bytes
 0 pkts/sec 1 bytes/sec

1 minute input rate 455 pkts/sec, 18204 bytes/sec
1 minute output rate 0 pkts/sec, 0 bytes/sec
1 minute drop rate, 0 pkts/sec

5 minute input rate 118 pkts/sec, 4731 bytes/sec
5 minute output rate 0 pkts/sec, 0 bytes/sec
5 minute drop rate, 0 pkts/sec

outside:

received (in 208.540 secs):
 0 packets 0 bytes
 0 pkts/sec 0 bytes/sec

transmitted (in 208.540 secs):
 67326 packets 2693040 bytes
 322 pkts/sec 12913 bytes/sec

1 minute input rate 0 pkts/sec, 0 bytes/sec
1 minute output rate 455 pkts/sec, 18202 bytes/sec
1 minute drop rate, 0 pkts/sec

5 minute input rate 0 pkts/sec, 0 bytes/sec
5 minute output rate 118 pkts/sec, 4730 bytes/sec
5 minute drop rate, 0 pkts/sec

All traffic goes from DMZ interface to outside interface...

So, we have a host on the DMZ interface which opens 300+ connections per second.
Case Study: Infected Local Host

• Which hosts have many connections?

ASA/C1# show local-host brief conn tcp 100

Interface inside: 0 active, 0 maximum active, 0 denied
Interface outside: 13526 active, 43750 maximum active, 0 denied
Interface dmz: 1 active, 3 maximum active, 0 denied
local host: <172.16.1.2>,
 TCP flow count/limit = 13580/unlimited
 TCP embryonic count to host = 0
 TCP intercept watermark = unlimited
 UDP flow count/limit = 0/unlimited

• DMZ host identified. It has 13,580 connections (we don’t know yet whether they are established or half-open connections)

• Important point here is that “local-host” data structure keeps track of “to-the-host” embryonic connections only

• This explains “show local-host brief conn embryonic 100” output, which is empty
Case Study: Infected Local Host

- Check if the host 172.16.1.2 has many half-open connections

```
ASA/C1# show conn long address 172.16.1.2 state tcp_embryonic
...
TCP outside: 207.196.96.126/139 (207.196.96.126/139) dmz: 172.16.1.2/1986
(192.0.2.12/1986), flags saA, idle 6s, uptime 6s, timeout 30s, bytes 0

TCP outside: 207.195.0.75/139 (207.195.0.75/139) dmz: 172.16.1.2/64812
(192.0.2.12/64812), flags saA, idle 12s, uptime 12s, timeout 30s, bytes 0

TCP outside: 207.53.11.165/139 (207.53.11.165/139) dmz: 172.16.1.2/64295
(192.0.2.12/64295), flags saA, idle 13s, uptime 13s, timeout 30s, bytes 0

(192.0.2.12/4377), flags saA, idle 0s, uptime 0s, timeout 30s, bytes 0
...
```

s – awaiting outside SYN
a – awaiting outside ACK to SYN
A – awaiting inside ACK to SYN

- It seems this host is infected by a virus and tries to establish TCP connections to random Internet hosts over TCP/139…
Case Study: Infected Local Host

• Solution: Limit the number of half-open connections?

• This won’t work, because source IP address is not spoofed!
 - Limiting half-open connections enables TCP Intercept on ASA
 - As soon as the number of half-open connections reaches the limit, TCP Intercept kicks in and checks if the sender is real
 - It does this by sending TCP SYN/ACK to sender on behalf of the receiver:

```
207.19.80.102.139 > 172.16.1.2.1026: S 91583821:91583821(0) ack 960609065 win 0 <mss 536>
```

• Connection is not allowed to go through if ACK is not received in response

• Syslog messages are generated when connection limit is exceeded:

%ASA-6-201010: Embryonic connection limit exceeded 1000/1000 for input packet from 172.16.1.2/29449 to 207.154.160.149/139 on interface dmz

! Or in case of a per-host limit:

%ASA-6-201012: Per-client embryonic connection limit exceeded 1000/1000 for input packet from 172.16.1.2/2024 to 207.12.10.49/139 on interface dmz
Case Study: Infected Local Host

- Solution: Limit the number of all connections!
- We can either set an aggregate limit (per MPF class) or a per-host limit

```
policy-map global_policy
  class dmz_hosts
    set connection per-client-max 1000

service-policy global_policy global
```

- Syslog messages when the limit is exceeded:

```
%ASA-3-201013: Per-client connection limit exceeded 1000/1000 for input packet from 172.16.1.2/2026 to 207.37.27.155/139 on interface dmz

! Or in case of an aggregate limit:

%ASA-3-201011: Connection limit exceeded 1000/1000 for input packet from 172.16.1.2/19612 to 207.204.201.85/139 on interface dmz
```
Case Study: Infected Local Host

- The number of connections doesn’t grow anymore:

 ASA/C1# show conn count
 1000 in use, 1000 most used

 ASA/C1# show xlate count
 2008 in use, 3008 most used

- Statistics:

 ASA/C1# show service-policy set conn detail

 Global policy:
 Service-policy: global_policy
 Class-map: dmz_hosts
 Set connection policy: per-client-max 1000
 current conns 1000, drop 63614

 Per client Embryonic Total
 dmz 172.16.1.2 1000 1000
Case Study: A Note About Syslog

• Note that syslog messages 201010-201013 are not rate-limited by default. You may want to configure something like:

```
logging rate-limit 5 60 message 201010
logging rate-limit 5 60 message 201011
logging rate-limit 5 60 message 201012
logging rate-limit 5 60 message 201013
```

• Or you can set rate-limit for all messages under specified severity level. All messages will be rate-limited individually

```
logging rate-limit 1000 600 level 6
```

• It’s not recommended to rate-limit levels 3 and above, as you can miss important system messages; unneeded level 3 and level 2 messages can be disabled or rate-limited individually

• Few messages should be moved from level 4 to level 2 due to their importance (will be discussed soon)
Case Study: Understanding Outputs

- In this example we protect DMZ server with TCP Intercept
 - set connection embryonic-conn-max 2
 - Three HTTP connections were opened with spoofed source IP
 - After that two SMTP connections were opened

ASA/C1# show local-host
...
Interface dmz: 1 active, 3 maximum active, 0 denied
local host: <172.16.1.2>,
 TCP flow count/limit = 4/unlimited
 TCP embryonic count to host = 2
 TCP intercept watermark = unlimited
 UDP flow count/limit = 0/unlimited

Conn:
 TCP outside 195.1.1.1:64303 dmz 172.16.1.2:25, idle 0:00:02, bytes 0, flags UB
 TCP outside 195.1.1.1:34811 dmz 172.16.1.2:25, idle 0:00:03, bytes 0, flags UB
 TCP outside 195.1.1.1:54063 dmz 172.16.1.2:80, idle 0:00:06, bytes 0, flags aB
 TCP outside 195.1.1.1:24611 dmz 172.16.1.2:80, idle 0:00:09, bytes 0, flags aB

Four connection entries were created (2 + 2)
Three connections were intercepted (1 + 2)
Three %ASA-6-201010 syslog produced
One intercepted connection dropped (1)

Limits are only valid in local-host structure
in 8.2 and below, when “static” or “nat” commands are used to set them
Case Study: Understanding Outputs

• In this example we protect DMZ server with TCP Intercept
 • set connection embryonic-conn-max 2
 • Three HTTP connections were opened with spoofed source IP
 • After that two SMTP connections were opened

ASA/C1# show service-policy int outside set connection detail

Interface outside:
 Service-policy: outside_policy
 Class-map: to_dmz_server
 Set connection policy: embryonic-conn-max 2
 current embryonic conns 2, drop 0

So, one connection was dropped by Intercept.

But drop counter was not updated.
Case Study: Final Notes

• Note that connection limits are very important to prevent depletion of resources
 • PAT pools can be depleted, unless the number of connections is limited
 • ASA can run out of memory if too many connections are established
 • High CPU can sometimes be observed

• Choose the right tool depending on situation
 • Aggregate and per-host embryonic connection limits are important to protect internal servers from SYN flood attacks and outside hosts from SYN scans generated by inside hosts
 • Aggregate connection limits are useful to protect internal servers from overloading
 • Per-host connection limits are useful to impose restrictions on your local users
 • Aggregate connection limits can help protect ASA itself from resource depletion
Resource Management
ASA Resources

- Most critical resources are:
 - Heap memory
 - DMA memory
 - CPU
 - Connection slots
 - Slots in NAT/PAT pools

- Most ASA models have enough DRAM and CPU power to run well under heavy traffic load with the number of concurrent connections defined in the specification:
Example

- ASA5555 supports up to 1M connections and 50K conn setup rate
- As you can see below, 934,895 connections are established and 47% of memory is still free, CPU load is negligible

```
ASA# show resource usage
Resource                  Current     Peak      Limit     Denied  Context
Syslogs [rate]            0           4  unlimited  0         admin
Inspects [rate]           0           2  unlimited  0         admin
Routes                    2           2  unlimited  0         admin
Conns                     934895     934895  unlimited  0         C1
Xlates                    934903     934903  unlimited  0         C1
Hosts                     1718768    1718768  unlimited  0         C1
Conns [rate]              6449        8869  unlimited  0         C1
Routes                    5           5  unlimited  0         C1

ASA# show memory
Free memory: 4031382464 bytes (47%)
Used memory: 4558552128 bytes (53%)
-----------------------------
Total memory: 8589934592 bytes (100%)

ASA# show cpu detailed
Break down of per-core data path versus control point cpu usage:
Core     5 sec  1 min   5 min
Core 0  16.6 (15.6 + 1.0) 20.1 (20.0 + 0.1) 13.4 (13.3 + 0.0)
Core 1  17.0 (16.0 + 1.0) 20.3 (20.2 + 0.1) 13.1 (13.1 + 0.0)
```
ASA Resources

• Note, however, that some ASA features can allocate lots of memory and significantly increase CPU load

• This always depends on traffic profile

• For example, what works well on an ASA located inside your corporate network may not work that well on network perimeter, due to the risk of DoS attacks
 • Memory usage increases if traffic is inspected at application layer
 • Extended PAT can allocate lots of memory for PAT pools
 • Threat Detection Statistics can be memory and CPU intensive
 • Other subsystems, such as WebVPN, can consume lots of memory
 • SMP platforms use per-core application caches, ASA5585 SSP-60 has 24 CPU cores…
 • Etc.
ASA Resources

• Bottom line: it’s very important to protect ASA itself from resource depletion
 • We’ve already discussed MPF connection limits
 • Another tool that can help is Resource Manager (RM)

• Resource Manager
 • Limits the number of concurrent connections in single context mode
 • Every platform has its own default connection limit
 • In multiple context mode administrators can create resource classes to restrict context access to system resources
 • System-wide connection limit is still enforced in multiple context mode

%ASA-5-321001: Resource 'conns' limit of 1001000 reached for system
Default Platform Connection Limits

<table>
<thead>
<tr>
<th>Model</th>
<th>ASA DRAM</th>
<th>Connection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>5512-X Base License</td>
<td>2,048</td>
<td>100,000</td>
</tr>
<tr>
<td>5512-X Sec+ License</td>
<td>2,048</td>
<td>250,000</td>
</tr>
<tr>
<td>5515-X</td>
<td>4,096</td>
<td>251,000</td>
</tr>
<tr>
<td>5525-X</td>
<td>4,096</td>
<td>500,000</td>
</tr>
<tr>
<td>5545-X</td>
<td>6,144</td>
<td>750,000</td>
</tr>
<tr>
<td>5555-X</td>
<td>8,192</td>
<td>1,000,000</td>
</tr>
<tr>
<td>5580-20</td>
<td>8,192</td>
<td>2,000,000</td>
</tr>
<tr>
<td>5580-40</td>
<td>12,288</td>
<td>4,000,000</td>
</tr>
<tr>
<td>5585 SSP-10</td>
<td>6,144</td>
<td>1,000,000</td>
</tr>
<tr>
<td>5585 SSP-20</td>
<td>12,288</td>
<td>2,000,000</td>
</tr>
<tr>
<td>5585 SSP-40</td>
<td>12,288</td>
<td>4,000,000</td>
</tr>
<tr>
<td>5585 SSP-60</td>
<td>24,576</td>
<td>10,000,000</td>
</tr>
</tbody>
</table>
Resource Manager Configuration

class TEST
 limit-resource Conns 30.0%

class default
 limit-resource All 0
 limit-resource Mac-addresses 65535
 limit-resource ASDM 5
 limit-resource SSH 5
 limit-resource Telnet 5

ASA# show run all class

ASA# show resource allocation

<table>
<thead>
<tr>
<th>Resource</th>
<th>Total</th>
<th>% of Avail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conns [rate]</td>
<td>unlimited</td>
<td></td>
</tr>
<tr>
<td>Inspects [rate]</td>
<td>unlimited</td>
<td></td>
</tr>
<tr>
<td>Syslogs [rate]</td>
<td>unlimited</td>
<td></td>
</tr>
<tr>
<td>Conns</td>
<td>300300(U)</td>
<td>30.00%</td>
</tr>
<tr>
<td>Hosts</td>
<td>unlimited</td>
<td></td>
</tr>
<tr>
<td>SSH</td>
<td>10</td>
<td>10.00%</td>
</tr>
</tbody>
</table>

U = Unlimited: Some contexts have no limit and are not included in the total

Note that “class default” limits are inherited by all contexts, unless the limit is overridden explicitly by another resource class.

For example, each context is restricted to 5 SSH sessions, 5 telnet sessions, etc.

This command shows how many system resources are allocated to all contexts (in total).
Resource Manager Configuration

• Use this command to see current and peak resource usage for each context

<table>
<thead>
<tr>
<th>Resource</th>
<th>Current</th>
<th>Peak</th>
<th>Limit</th>
<th>Denied</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syslogs [rate]</td>
<td>0</td>
<td>6</td>
<td>unlimited</td>
<td>0</td>
<td>admin</td>
</tr>
<tr>
<td>Inspects [rate]</td>
<td>0</td>
<td>3</td>
<td>unlimited</td>
<td>0</td>
<td>admin</td>
</tr>
<tr>
<td>Routes</td>
<td>2</td>
<td>2</td>
<td>unlimited</td>
<td>0</td>
<td>admin</td>
</tr>
<tr>
<td>Syslogs [rate]</td>
<td>0</td>
<td>7</td>
<td>unlimited</td>
<td>0</td>
<td>C1</td>
</tr>
<tr>
<td>Conns</td>
<td>300300</td>
<td>300300</td>
<td>299300</td>
<td>31320</td>
<td>C1</td>
</tr>
<tr>
<td>Xlates</td>
<td>331626</td>
<td>331626</td>
<td>unlimited</td>
<td>0</td>
<td>C1</td>
</tr>
<tr>
<td>Hosts</td>
<td>609585</td>
<td>609585</td>
<td>unlimited</td>
<td>0</td>
<td>C1</td>
</tr>
<tr>
<td>Conns [rate]</td>
<td>3598</td>
<td>4977</td>
<td>unlimited</td>
<td>0</td>
<td>C1</td>
</tr>
</tbody>
</table>

• Use “show resource usage system” to see totals

• Syslog message will be generated in the admin context should a user context go over limit

system : %ASA-5-321001: Resource 'conns' limit of 300300 reached for context 'C1'
Resource Manager Configuration

- There are many different types of resources available

<table>
<thead>
<tr>
<th>ASA(config)# class TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASA(config-class)# limit-resource ?</td>
</tr>
</tbody>
</table>

Following resources available:
- ASDM: ASDM Connections
- All: All Resources
- Conns: Connections
- Hosts: Hosts
- Mac-addresses: MAC Address table entries
- Routes: Routing Table Entries
- SSH: SSH Sessions
- Telnet: Telnet Sessions
- VPN: VPN resources
- Xlates: XLATE Objects

ASA(config-class)# limit-resource rate ?

class mode commands/options:
Following resources available:
- Conns: Connections/sec
- Inspects: Inspects/sec
- Syslogs: Syslogs/sec
Resource Manager Syslogs

- Resource Manager generates the following syslogs when a limit is reached
 - %ASA-5-321001: Resource … limit of … reached
 - %ASA-5-321002: Resource … rate limit of … reached
 - %ASA-6-321003: Resource … log level of … reached
 - %ASA-6-321004: Resource … rate log level of … reached

- Note that these messages are not rate-limited by default and have low severity for unknown reasons

- Several other syslogs were introduced in 8.4(1) (read on!)
Monitoring Resource Utilization
Monitoring Resource Utilization

- There are many different ways to monitor memory, CPU usage, etc.
 - Periodic data collection via Unix Expect scripts or SecureCRT VB scripts
 - Periodic data collection via Smart Call Home
 - Periodic data collection via EEM (will be available soon on ASA)
 - Syslog events
 - SNMP polling
 - SNMP traps

- Significant enhancements were made in 8.4(1), new syslog events and SNMP traps were introduced

- ASA MIBs are beyond the scope of this presentation. Refer to:
Memory Utilization: Terminology

- ASA system memory is divided into Global Shared Pool and DMA memory

- DMA memory is used for packet processing and also used by various ASA processes:
 - Syslog
 - ASA HTTP Server (ASDM)
 - WebVPN (Clientless/AnyConnect)
 - SSH
 - IPSec (IKEv1/IKEv2)
 - Etc.

- Global Shared Pool is a general purpose memory (or heap)
Memory Utilization Guidelines

• Note that high memory utilization on ASA doesn’t always mean that something is wrong and ASA cannot service new connections and createxlates

• Memory can be held in application caches in anticipation for another traffic spike

• On the other hand, low free heap memory can be an indication of a memory leak, device oversubscription or a DoS attack

• Another possible problem with the heap memory is memory fragmentation

• Low-end platforms, such as ASA5505, ASA5510, ASA5520 may experience shortage of DMA memory when many syslog destinations and other features are configured

• Always open TAC case if in trouble
Memory Utilization: Understanding Output

- Modern software versions should display the same amount of free memory in “show memory” and “show memory detail”, although always use “detail” option if in doubt

<table>
<thead>
<tr>
<th>Command</th>
<th>Memory Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASA# show memory</td>
<td>Free memory: 6804260944 bytes (79%)</td>
</tr>
<tr>
<td></td>
<td>Used memory: 1785673648 bytes (21%)</td>
</tr>
<tr>
<td></td>
<td>Total memory: 8589934592 bytes (100%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASA# show memory detail</th>
<th>Memory Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free memory</td>
<td>6804260944 bytes (79%)</td>
</tr>
<tr>
<td>Used memory</td>
<td></td>
</tr>
<tr>
<td>Allocated memory in use</td>
<td>526686128 bytes (6%)</td>
</tr>
<tr>
<td>Reserved memory</td>
<td>1258987520 bytes (15%)</td>
</tr>
<tr>
<td>Total memory</td>
<td>8589934592 bytes (100%)</td>
</tr>
</tbody>
</table>

- **Free heap memory**
- **Low and high watermarks**
- **DMA and Heap Pools**
- **Memory is fragmented if this value is significantly lower than the amount of free memory**
Memory Utilization: Example

- Example: ASA running low on heap memory, almost all DMA memory is free

```
ASA# show memory detail
Free memory: 286432880 bytes ( 3%)
Used memory:
  Allocated memory in use: 7044514192 bytes (82%)
  Reserved memory: 1258987520 bytes (15%)
-----------------------------
Total memory: 8589934592 bytes (100%)

Least free memory: 118976 bytes ( 0%)
Most used memory: 8589815616 bytes (100%)

MEMPOOL_DMA POOL STATS:
...
Free memory = 253327520
...
MEMPOOL_GLOBAL_SHARED POOL STATS:
...
Max contiguous free mem = 3552
Allocated memory in use = 7330242576
Free memory = 704496
```
Memory Utilization: Error Messages

• Generic syslog message:

```bash
%ASA-3-211001: Memory allocation Error
```

• Sample console messages:

```bash
process_create: out of stack memory
Unable to create Unicorn Admin Handler

process_create: out of memory
_listen_telnet: failed to create thread for interface 65537 port 23

ERROR: Unable to allocate memory for usage display

Out of memory, cannot allocate memory for log message.
```

• Use the following command to check console output:

```bash
ASA# show console-output
```
Memory Utilization: Error Messages

• New syslog was introduced in 8.4(1). It is produced in admin context when system memory usage reaches hardcoded value of 80% and stays there for a period of 5 minutes

%ASA-2-321006: System Memory usage reached 89%

• Also, it is now possible to send SNMP trap in this case

snmp-server enable traps memory-threshold

• DISMAN-EVENT-MIB is used to send the trap

• CISCO-ENHANCED-MEMPOOL-MIB can be used for polling (since 8.4(1))
 • In multiple context mode use admin context for polling
 • First row returned should report on admin memory usage; second row should return information for the whole system
Blocks Utilization

- Blocks are packet buffers mostly used to hold packets
 - 1550 Byte blocks are used for Ethernet frames
 - 9216 Byte blocks are used for jumbo Ethernet frames (disabled by default)
 - 2048 Byte blocks are used by ASA5505 Ethernet driver
 - Etc.

- ASA traffic forwarding and associated performance issues is a extremely overcomplicated subject
 - For details refer to fantastic BRKSEC-3021 Networkers session led by Andrew Ossipov

- Remember that “show blocks” command shows you just the tip of the iceberg…

- In ASA 8.4(1) new syslog message was introduced:

 %ASA-3-321007: System is low on free memory blocks of size 1550 (1 CNT out of 30000 MAX)
The following output was taken on the ASA5555 (which has two CPU cores) and edited a bit to make it easier to read.

Note how Data Path and Control Point utilization add up.

ASA# show cpu detailed

Break down of per-core data path versus control point cpu usage:
Core 5 sec 1 min 5 min
Core 0 47.6 (17.6 + 30.0) 21.4 (12.4 + 9.0) 5.7 (3.4 + 2.3)
Core 1 47.0 (17.8 + 29.2) 21.5 (12.6 + 8.9) 5.7 (3.5 + 2.2)

Total CPU utilization for:
5 seconds = 47.5%; 1 minute: 21.5%; 5 minutes: 5.7%

ASA# show processes cpu-usage sorted non-zero

PC Thread 5Sec 1Min 5Min Process
- - 9.0% 6.4% 1.8% DATAPATH-1-1533
- - 8.8% 6.2% 1.7% DATAPATH-0-1532
1.4% 0.3% 0.1% CP Processing
1.2% 0.3% 0.1% Logger
27.1% 8.4% 2.1% ci/console

High CPU in ci/console was caused by running “show …” | include

DP utilization
CP utilization
CPU Utilization: CPU Hogs

- CPU hog events are recorded by ASA when a process runs on the CPU longer than the minimum platform threshold. Function stack (traceback) is also recorded.

- Such events are usually benign, unless the hog lasts longer than 10-20 ms or NUMHOG counter increments rapidly for the process.

ASA# show processes cpu-hog

<table>
<thead>
<tr>
<th>Process:</th>
<th>CP Threat-Detection Processing, NUMHOG: 30, MAXHOG: 9, LASTHOG: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LASTHOG At:</td>
<td>12:47:29 MSK Jan 13 2014</td>
</tr>
<tr>
<td>PC:</td>
<td>0x0000000000079a06f (suspend)</td>
</tr>
<tr>
<td>Call stack:</td>
<td>0x0000000000079a06f 0x00000000000428d45</td>
</tr>
</tbody>
</table>

CPU hog threshold (msec): 1.542

Last cleared: None

Use "clear process cpu-hog" to clear the table

- Syslog messages are produced in admin context

%ASA-4-711004: Task ran for 9 msec, Process = CP Threat-Detection Processing, PC = …, Call stack = …
CPU Utilization: Error Messages

- New syslog was introduced in 8.4(1). It is produced in admin context when CPU utilization reaches 95% or more and stays there for a period of 5 minutes

 %ASA-2-321005: System CPU utilization reached 95%

- Also, it is now possible to send SNMP traps when either “high” threshold (70% by default) or hardcoded threshold (95%) is crossed

- The default monitoring period for “high” threshold is one minute, which means that CPU utilization should remain above the threshold during this period to produce the trap

 - `snmp cpu trap threshold rising <10-94%> <minutes>`
 - `snmp-server enable traps cpu threshold rising`

- CISCO-PROCESS-MIB is used to send the trap and can also be used for polling
 - Same rules apply as for memory polling
DP – CP Queues

- DP–CP queues are used to punt “packets” to CP from Data Path

```
ASA/C1# show asp event dp-cp

DP-CP EVENT QUEUE           QUEUE-LEN HIGH-WATER
Punt Event Queue             0           1
Routing Event Queue          0           0
Identity-Traffic Event Queue 0           1
General Event Queue          0           1
Syslog Event Queue           0           3
Non-Blocking Event Queue     0           4
Midpath High Event Queue     0           0
Midpath Norm Event Queue     0           3
Crypto Event Queue           0           61
SRTP Event Queue             0           0
HA Event Queue               0           0
Threat-Detection Event Queue 0           0
SCP Event Queue              0           0
ARP Event Queue              0           9
IDFW Event Queue             0           0
CXSC Event Queue             0           0

EVENT-TYPE ALLOC ALLOC-FAIL ENQUEUED ENQ-FAIL RETIRED 15SEC-RATE
punt   54      0     54      0      54      0
inspect-smtp  54      0     54      0      54      0
arp-in  734     0     734     0      734      2
identity-traffic  5      0     5      0      5      0
syslog  165     0     165     0      165      1
ips-cplane  433     0     433     0      433      0
```
DP – CP Queues

• The above command can be helpful when inspected traffic causes high CPU in CP Thread, as it shows 15 sec. rate

• DP–CP statistics can be cleared by “clear asp event dp-cp”

• Also use “show service-policy” to double-check

ASA/C1# show service-policy inspect esmtp

Global policy:
 Service-policy: global_policy
 Class-map: inspection_default
 Inspect: esmtp _default_esmtp_map, packet 54, lock fail 0, drop 0, reset-drop 0, v6-fail-close 0

• DP–CP queues have limited depth, ENQ-FAIL increments when the queue is full and syslog message is produced. Examples:

%ASA-4-447001: ASP DP to CP Punt Event Queue was full. Queue length 2048, limit 2048
%ASA-4-447001: ASP DP to CP General Event Queue was full. Queue length 8192, limit 8192
DP – CP Queues

- Below is the list of ASA features which do not require punting to CP

```
ASA# show asp multiprocessor accelerated-features

MultiProcessor accelerated feature list:
  Access Lists
  DNS Guard
  Failover Stateful Updates
  Flow Operations (create, update, and tear-down)
  Inspect HTTP URL Logging
  Inspect HTTP (AIC)
  Inspect IPSec Pass through
  Inspect ICMP and ICMP error
  Inspect RTP/RTCP
  IP Audit
  IP Fragmentation & Re-assembly
  IPSec data-path
  MPF L2-L4 Classify
  Multicast forwarding
  NAT/PAT
  Netflow using UDP transport
  Non-AIC Inspect DNS
  Packet Capture
  QOS
  Resource Management
  Routing Lookup
  Shun
  SSL data-path
  Syslogging using UDP transport
  TCP Intercept
  TCP Security Engine
  TCP Transport
  Threat Detection
  Unicast RPF
  WCCP Re-direct
```

Above list applies to routed, transparent, single and multi mode.
NAT/PAT Pools Utilization

• NAT on ASA is another complicated subject

• Troubleshooting tool include:
 • “show nat [detail]” command, which prints NAT rule table
 • Set of “show asp table classify” commands which display NAT rules downloaded to softNP
 • “show nat pool” command which prints information about utilization of NAT/PAT pools
 • Various syslog messages
 • NAT-MIB introduced in 8.4(1)

• In general, NAT troubleshooting is beyond the scope of this presentation

• We will only talk about PAT scalability
NAT/PAT Scalability

- Example: PAT pool is completely exhausted

```
ASA/C1# show nat pool
TCP PAT pool outside:obj-192.0.2.3, address 192.0.2.3, range 1-511, allocated 511
TCP PAT pool outside:obj-192.0.2.3, address 192.0.2.3, range 512-1023, allocated 512
TCP PAT pool outside:obj-192.0.2.3, address 192.0.2.3, range 1024-65535, allocated 64512
```

- Remember that it is possible to have only 64K TCP xlates and 64K UDP xlates for a single global IP in a PAT pool and low ports cannot be used if a sender source port is >1023
 - Low ports can be made available by “flat include-reserve” NAT option (8.4(3))
- Also, take into account that xlates live for a period of 30 seconds by default after associated TCP or UDP connection is closed
 - “timeout pat-xlate …” minimum value is 30 seconds
- This means that the maximum translation rate for a single PAT address for one IP protocol is about to 2100 xlates/sec (64K / 30)
NAT/PAT Troubleshooting

- Also, note that syslogs `%ASA-3-305006` and `%ASA-3-202010` (8.4(1)) do not necessarily indicate that the NAT or PAT pool is exhausted.

 %ASA-3-305006: portmap translation creation failed for tcp src dmz:172.16.1.2/3329 dst outside:207.155.110.226/80

 %ASA-3-202010: PAT pool exhausted. Unable to create TCP connection from dmz:172.16.1.2/13171 to outside:207.54.99.10/80

- Such messages can be produced due to a completely different NAT issue or due to a software bug, although `%ASA-3-202010` usually tells truth.

- So, troubleshooting is difficult.
NAT/PAT Scalability Options

• There are three options to improve PAT scalability
 • Use several global IPs in a PAT pool, instead of a single one
 • Use extended PAT (“pat-pool … extended”) – 8.4(3)
 • Use per-session PAT – 9.0(1)

• 1st option is bulletproof, but not all customers have many global IPs

• 2nd option cannot be recommended
 • It is incompatible with VoIP inspects: [link](http://www.cisco.com/en/US/docs/security/asa/asa91/configuration/firewall/inspect_overview.html#wpxref53568)
 • It can cause more problems than it solves due to excessive memory usage
 • It solves scalability issue by dynamically allocating a new PAT pool for each new destination IP, so two local hosts can be translated to the same global IP / global port if they go to different destinations

• 3rd one remains
Per-session PAT Configuration Example

- This feature was created for ASA clustering, but can also help in non-clustering setups. It is only used by dynamic PAT
- Per-session PAT disables “timeout pat-xlate” for matching traffic
- Note, however, that PAT collisions can occur if two internal hosts go to the same server/port through the ASA PAT one after another.
 - ASA can reuse the same mapped IP/port for the 2nd connection. Should the server still keep the 1st connection in the TIME_WAIT state it would refuse the 2nd one

ASA/C1# show run all xlate

xlate per-session permit tcp any4 any4
xlate per-session permit tcp any4 any4
xlate per-session permit tcp any4 any6
xlate per-session permit tcp any6 any4
xlate per-session permit tcp any6 any6
xlate per-session permit udp any4 any4 eq domain
xlate per-session permit udp any4 any6 eq domain
xlate per-session permit udp any6 any4 eq domain
xlate per-session permit udp any6 any6 eq domain

Note that per-session PAT is disabled automatically if you upgrade from a previous version.

It is enabled by default in new setups.

You can create your own per-session PAT rules and they will be placed above default system rules.

‘x’ flag is added to connection entry (“show conn long”) when user traffic hits per-session PAT permit rule.
Conclusion
Conclusion

• Protect ASA to help it protect your network
• Baseline CPU load, connection counts, xlate counts, and traffic
• Set embryonic and maximum connection limits via MPF, use Resource Manager in multiple context mode
• Perform monitoring via syslog, SNMP, ASDM graphs
• Log at level 3 (errors) or 2 (critical), move important messages to level 2, disable unneeded syslog messages, rate-limit messages if necessary
• Follow KISS principle, don’t enable features unless you really need them and clearly understand what they do
• Use failover, but don’t set millisecond failover timers
• Run the latest maintenance release in your software train
• Upgrade major feature trains only when you need new features, or after train has matured
Using Smart Call Home for Monitoring

• Example: Collecting memory utilization every hour:

```plaintext
service call-home
    call-home
    alert-group-config snapshot
        add-command "show conn count"
        add-command "show memory detail"
    contact-email-addr user@cisco.com
    sender from user@cisco.com
    sender reply-to user@cisco.com
    mail-server <email_server> priority 1
    profile TAC
        active
        destination address email user@cisco.com
        destination transport-method email
        destination preferred-msg-format long-text
    subscribe-to-alert-group snapshot periodic interval 60
```

• More info:
Recommended Reading
Recommended Reading

Maximizing Firewall Performance
BRKSEC-3021

Andrew Ossipov
Technical Leader
Опрос #2
Опрос #2: Что Cisco должна изменить в первую очередь в своих продуктах, имеющих отношение к информационной безопасности. Выберите не более 5 вариантов из 8

- Отказаться от функций типа firewall на маршрутизаторах и сосредоточиться на специализированных устройствах вроде ASA
- Отказаться от специализированных устройств и реализовать все функции безопасности на маршрутизаторах и коммутаторах
- Создать специализированное решение для защиты от DoS и DDoS атак
- Сосредоточить основные усилия на развитие Application Firewall (межсетевых экранах “нового поколения” – NGFW), например, ASA CX
- Синтегрировать развитый Application Firewall и традиционный Firewall в едином программном коде на платформе ASA
- Кардинально улучшить функциональные возможности системы IDS/IPS
- Кардинально улучшить масштабируемость решений на основе Cisco ASA, например, за счет доработки и функционального насыщения ASA clustering
- Реализовать единый графический интерфейс управления всеми устройствами безопасности
Q & A

Эксперт ответит на некоторые Ваши вопросы. Используйте Q&A панель, чтобы задать еще вопросы
Сессия «Спросить Эксперта»

Получить дополнительную информацию, а также задать вопросы экспертам в рамках данной темы вы можете в течение двух недель, на странице, доступной по ссылке

https://supportforums.cisco.com/community/russian/expert-corner

Вы можете получить видеозапись данного семинара и текст сессии Q&A в течении ближайших 5 дней по следующей ссылке

https://supportforums.cisco.com/community/russian/expert-corner/webcast
Next Expert Series Webcast на Русском

Тема: Расширенные возможности Cisco Unified Border Element. Настройка, поиск и устранение неисправностей

во вторник, 11 февраля, в

12.00 Moscow Time

Присоединяйтесь к эксперту Cisco Владимиру Савостину

Во время презентации эксперт Cisco ТАС Владимир Савостин рассмотрит некоторые возможности Cisco UBE, как широко известные и часто используемые, так и новые, недавно появившиеся. Также Вы узнаете о настройке, поиске и устранении проблем при использовании данного функционала.

Регистрируйтесь на вебкаст по ссылке:

Приглашаем Вас активно участвовать в Cisco Support Community и социальных сетях

https://supportforms.cisco.com/community/russian

http://www.facebook.com/CiscoRu

http://twitter.com/CiscoRussia

http://www.youtube.com/user/CiscoRussiaMedia

http://www.linkedin.com/groups/CSC-Cisco-Support-Community-3210019

Newsletter Subscription:
Спасибо за Ваše время

Пожалуйста, участвуйте в опросе
Thank you.