Host Participation in Network Convergence – TCP Retransmissions

Part 1.
One of the important things network engineers have to understand, and I have found it very useful in the design of stable internetworks, is the fact that we are able to design, large and complex internetworks, we are able to understand the protocols used for routing, transport and application layers of the OSI, but an understanding of the platform, and operating system interpretation of these protocols is essential to ensure a stable environment for end-hosts and the applications.  
The main protocol of choice over the last 10 years is TCP.  TCP is a reliable transport mechanism to deliver packets from source to destination, Hence why it is very popular.  It is how the platform TCP implementations conform to standards, in certified RFCs, which ensure the applications remain stable.  I have personally put these issues into practice on many occasions over the years; looking at application TCP failures through public Internet based applications and corporate systems.
There are a three of key factors in application and network design that come into play here.  
· A network is inherently designed to have multiple redundant paths thru a network as networks “do” and “always will” suffer from network failures.  Link failure, hardware or software failures being the main cause of network outages.  The underlying IP (Layer 3 protocols, such as OSPF, EIGRP and RIP) are designed for fast convergence and dissemination of new routing paths during network failure. 
· Also within the routing protocols there are timers set by the administrators to tell the network how fast to converge upon a link failure. I hear you ask:  Timers?  When a link fails?  “I want my network to converge immediately upon a link failure.  Obviously this is the best thing to do as we want the fastest convergence possible.  We need convergence less than 2 ms”.  Well, in response to those very valid questions, we have to address the issue of link flapping and route flooding.  This is where a network link will go down for a very short period of time and re-introduce itself almost immediately. The affects of this can cause routing instabilities as if a link flap occurs, this has to be reflected through the whole of the internetwork (flooded), once for the link down, and very soon after for the link up. This is why we have routing protocol timers.  The key to managing this kind of network convergence scenario is detailed in the next paragraph.

· It is the TCP layer that holds the key to the end-to-end connection stability during any kind of network failure scenario.  The TCP layer of the end-host systems has a mechanism for handling packet delivery failures, i.e., data gets lost in the network during a link/network failure event.  It uses the concept of TCP retransmissions. The TCP stack basically states that when I send a packet to the other end of the connection,  I expect an acknowledgment to that packet from the receiver to say that he has received the data I sent him. If I don’t receive this acknowledgment, I will send it again, and again, and again. To do this, the TCP stack on an individual OS can be tuned for its own timers, just as a routing protocol can, and TCP has many configuration parameters.  If these parameters are incorrectly tuned, no matter how resilience and fast-converging your network infrastructure may be, the TCP sessions may break, as TCP retransmissions do not retransmit indefinitely. Thus causing disruption to the application. This sometimes can be interpreted as a network infrastructure problem.

The key point to the paragraphs above is that network infrastructure design and application design teams MUST understand the concepts and parameters that impact their design or application.  Both teams must understand each others requirements. Without this, there can be much confusion as to what the network is expected to deliver and what the application can handle.

Part 2.
There are basic guidelines on how TCP retransmissions should occur and there are two key parameters that enhance TCP session operation: 1) Max-Data-Retransmission and 
2) Retransmission Timeout (RTO). These retransmission parameters are critical in planning for network convergence and applications stability.  End host systems use these two parameters to determine if the data that has been sent out on the wire, if that data has been received by the receiver, or should the sender resend the data.
Max-Data-Retransmissions

· This is a parameter that tells the end-hosts TCP stack how many times to send the same data out on the wire, should the sender, not receive an acknowledgement from the receiver that it has received the data.  When a piece of data is sent from one host to another, it has a sequence number for every packet.  It is this sequence number that is tracked so that the sender knows if the receiver has received the data.  The sender attaches a number to the packet, and the receiver acknowledges that number.  It’s as simple as that.

Retransmission Timeout (RTO)
· This is a timeout value for the TCP retransmission.  Let’s say that the sender has sent a packet to the receiver, and the receiver has not yet acknowledged the packet, how long must the sender wait to retransmit that packet:  100ms, 1 second, 10 seconds etc?  The RTO timeout is a complex computation and I will not go into too much detail about formulae in the workings of the values, but just cover what is important.   Every packet that is sent from sender to receiver is acknowledged back from the receiver to the sender.  From this acknowledgment process, the TCP stack can calculate the time it took to send the data and receive the reply.  This gives the TCP sender the round trip time (RTT) of the packet.  From this timer, the RTO timer is established.  This RTT timer is tracked through the working lifecycle of the TCP session, and a smooth (average) RTT is established which then equates to the RTO value.
So, with the two variables mentioned above, how does this fit together and give our TCP session what we call a “TCP Session Time-to-Live (TTL)”, i.e., how much network convergence/outage time can our TCP sessions handle?  Let’s run through the process.
Example:

A TCP Session is happily working away between two hosts, one in London and one in NY.  A link failure occurs on one of the Atlantic pipes between the sites.  Let’s say that the average RTO calculated by TCP is 500ms.  When the sender sends any packet to the destination in NY, the sender transmits data on the wire, and immediately starts to decrement to RTO timer.  Once the RTO timer reaches zero, and no acknowledgement of that data has been received from the receiving host in NY, the sender will interpret this as the receiver did not get the data, and the sender will retransmit the same data again.   Now, the senders TCP stack will increment the max-data-retransmission by one and double the size of the RTO timer to 1000ms.  Please note the concept of doubling the RTO with every TCP retransmission.  This is called the TCP exponential back-off algorithm and is part of the TCP retransmission process.  Sender now waits for 1000ms for a TCP ACK, none received, increment max-data-retransmission by one and set RTO to 2000ms seconds and so on until the max-data-retransmission limit has been reached.  One the max-data-retransmissions has been reached, the TCP session is reset.
Part 3.
Now, in the example above, it still leave a few questions unanswered.  And in this section, I shall try to address them.  
Initial RTO is defined on TCP session setup, i.e., there has not been a packet sent to the destination as yet to calculate the RTO value so a static value is used. This initial RTO time will invariably change throughout the lifecycle of the TCP session as mentioned, it is based on the Round Trip Times between source and Destination as to take into account high speed LAN and lower speed WAN links.
Also, in with the variables for the max-data-retransmissions (say for Microsoft and SunOS platforms the default is 5), and a fluctuating RTO value, this gives us a finite period of time before TCP sessions break if the receiver is not acknowledging packets from the sender.  The table below can give you some idea of the values for TCP Session Time-to-Live predicted figures.

[image: image1.emf]RTO ms Retran 1 Retran 2 Retran 3 Retran 4 Retran 5 Retran 6 Retran 7

10ms 20 40 80 160 320 640 1280

50ms 100 200 400 800 1600 3200 6400

100ms 200 400 800 1600 3200 6400 12800

500ms 1000 2000 4000 8000 16000 32000 64000

1000ms 2000 4000 8000 16000 32000 64000 128000

2000ms 4000 8000 16000 32000 64000 128000 256000

3000ms 6000 12000 24000 48000 96000 192000 384000

1000ms = 1 second


You can see by the table above,  that if the RTO is set to a low value,  like you would expect on a local LAN to LAN connection (<=10ms),  the TCP Session Time-to-Live predicted figures are very short at the 5th retransmission and would be unable to last for very long in a network convergence scenario.  Please also note here that in the table, the 5th retransmission is sent, but the TCP session is not reset before the RTO has expired.  Example, the TCP session for RTO of 10ms is not reset until 640ms has elapsed.
On tests I have been performing,  Microsoft and Sun use the recommendations set down by RFCs to NOT implement this in it's entirety, they sensibly use a lower bounded RTO value of 500ms (approx) in my timings. This gives us a typical TCP session reset timing of between 18-36 seconds-pls see last 5 frames in file) 
Packet 1 Sent - Standard RT0 timer set.

 P1  55 20:48:21.1039   192.168.69.100           192.168.69.2          TELNET   Telnet Data ...

1st retransmission sent 554.3 ms later

 R1  56 20:48:21.6582   192.168.69.100           192.168.69.2          TELNET   Telnet Data ...

2nd retransmission sent 1s 207.0 ms later from 1st retransmission and 1s 646ms from orig packet

 R2  57 20:48:22.8652   192.168.69.100           192.168.69.2          TELNET   Telnet Data ...

3rd retransmission sent 2s 429.6 ms later from 2nd retransmission and 4s 190.9 ms from orig packet

 R3  58 20:48:25.2948   192.168.69.100           192.168.69.2          TELNET   Telnet Data ...

4th retransmission sent 4s 826.2 ms later from 3rd retransmission and 9s 19.1 ms from orig packet

 R4  59 20:48:30.1230   192.168.69.100           192.168.69.2          TELNET   Telnet Data ...

5th retransmission sent 9s 656.3 ms later from 4th retransmission and 18s 675.4 ms from orig packet

 R5  60 20:48:39.7793   192.168.69.100           192.168.69.2          TELNET   Telnet Data ...

In theory, what should happen now is that an RTO will get set of double the last RTO which could be up to 18 seconds.
Conclusions
As internetworks become faster and provide more bandwidth and less congestion,  the TCP timers for RTO, max-data-retransmissions and other variables such as window size, fast retransmit and others, may be tuned to deliver a more up-to-date congestion management system for the hosts that are being deployed today.  There are also new routing protocol deployments that explicitly target sub-second convergence in today’s networks. This is why the testing of these parameters and protocols in lab environments for optimum performance is an interesting task.

The most important factor in this paper is the understanding of what characteristics affect the stability of the end-hosts and applications in times of network convergence.  If the network infrastructure achieves sub 10 seconds convergence on a major failure of a component, this is acceptable and thus end hosts with the current settings should be able to deal and recover from this using standard host implementations of the TCP Stack.  If application architectures dictate that they will use internal application heartbeat mechanisms, and potentially tear down TCP sessions before the TCP re-transmission mechanism can be completed, then the network and application architects have to understand the consequences of such techniques.
I am not saying that the use of application heartbeats is an issue with the application architecture.  Not at-all.  With the use of time-sensitive critical information that is being replicated from applications to other hosts around the globe, it is vitally important that any packet loss or stale data be reflected in the most optimum time possible.  Just that we (both network and application architects) understand the implications of each other’s technology.
