The Catalyst has 2 ingress queues, one can be used for priority. The switch also
has 4 egress queues where one can be used for priority. It is more likely to end
up with congestion on egress than ingress but we have the option of configuring
both.

Lets assume that we have a switch with a Cisco IP phone connected to it.
The switchport will have a general configuration like the one below.

interface FastEthernet0/10

switchport mode access

switchport access vlan 10

switchport voice vlan 100

Even though the port is configured as access this is actually a form of trunk since
voice and data are using different VLANs. By default QoS is disabled. This means that
the switch will be transparent to the QoS markings. Whatever the phone, computers are
setting will be transparently forwarded through the switch. As soon as we turn on QoS
with the mls qos command this behaviour is no longer true.
If we just enable QoS and do nothing more than all markings will be set to BE (0).
This is true both for CoS and DSCP. To check if QoS is enabled use show mls qos.

Rack18SW1#sh mls qos

QoS is disabled

QoS ip packet dscp rewrite is enabled

If we trust the device connecting to a port, most likely a phone then we setup
a trust boundary. We can trust CoS, IP precedence or DSCP. CoS or DSCP will be
more common than precedence.
The CoS is a layer 2 marking, sometimes also called 802.1p priority bits.
CoS is only available in tagged frames like on a 802.1Q trunk. There is a risk
of loosing the marking when the frame gets forwarded through different media from
Ethernet to frame relay or PPP or whatever your links are running. Because of this
it makes much sense to either trust DSCP or use the CoS value to map to a DSCP value.
If we want to configure trusting of CoS on a port we configure it like this.

interface FastEthernet0/10

mls qos trust cos

This means that the CoS marking coming in to the port is trusted. Untagged frames
will receive BE treatment since there is no marking of those packets. If we want to
mark the untagged frames we use the following configuration.

interface FastEthernet0/10

mls qos trust cos

mls qos cos 3

All untagged frames will get a CoS marking of 3. What if we want the port to
mark all the packets the same no matter comes in to the port?
We can use the override command for this.

interface FastEthernet0/10

mls qos cos 1

mls qos cos override

This will effectively set the CoS value to 1 for all frames entering the port.
We can also use the switchport priority command to instruct the Cisco phone to set a
CoS marking on packets from the computer (data) entering the IP phone.

interface FastEthernet0/10

switchhport priority extend cos 1

This will set all frames from the computer entering the phone to have a
marking of 1 no matter what the computer tries to set them to.

It is important to know that the Catalyst switch uses a concept of an
internal QoS label. This is a DSCP value which is used internally and
will define into which queues the traffic ends up.
If you type show mls qos map you will see a lot of different maps that
the Catalyst uses. The CoS to DSCP map is used by the switch so if we trust
CoS then a DSCP value will be derived from that and when the frame is exiting
the switch to another switch then the CoS value will be set according
to the DSCP to QoS mapping table. This effectively keeps the QoS labels synchronized.

Now lets take a look at the ingress queues. We have two of them.
By default queue 2 will be the priority queue. To see the default settings
use the show mls qos input-queue command. We can manipulate which queue becomes
the priority queue and this is done with the
mls qos srr-queue input priority-queue bandwidth command.
If you want to use queue 1 as the priority queue then enter a 1 in the command.
The weight defines how much bandwidth the priority queue can use. By default it uses 10%
You can set this value from 0 to 40 so that it does not starve all of the bandwidth.

Rack18SW1#sh mls qos input-queue

Queue : 1 2

--

buffers : 90 10

bandwidth : 4 4

priority : 0 10

threshold1: 100 100

threshold2: 100 100

Rack18SW1#

Rack18SW1(config)#mls qos srr-queue input priority-queue 1 bandwidth ?

 enter bandwidth number [0-40]

The switch uses buffers if there is a need to queue packets. Remember the basic
function of QoS that without congestion there is no queueuing to begin with, only forwarding.
Unfortunately Cisco does not tell us a lot about how much buffers are available
in the Catalyst platforms. To tune the buffers we use mls qos srr-queue input buffers.
We should not assign too much of the buffers to the priority queue.
Finding optimal values depends a lot on your network and takes a lot of testing.
The safest bet might be to use Auto QoS and look what Cisco is using.
These values have been researched by Cisco and should be safe to use.
Lets temporarily enable Auto QoS and look which values we get.

Rack18SW2#sh mls qos input-queue

Queue : 1 2

--

buffers : 67 33

bandwidth : 90 10

priority : 0 10

threshold1: 8 34

threshold2: 16 66

With Auto QoS configured the priority queue gets 10% of bandwidth
and 33% of the buffers. The thresholds for the non priority queue are significantly
lower than the default settings. So the buffers assigns buffer space to the
queues but it does not say how much bandwidth is available to each queue.
We control this with mls qos srr-queue input bandwidth.
It is important to note here that the priority queue gets served first and then a
Shared Round Robin (SRR) algorithm is used to divide the traffic between the
two queues according to the weights. These are just weights and not necessarily
percentages although you could configure it to be.

Rack18SW1(config)#mls qos srr-queue input bandwidth ?

 enter bandwidth weight for queue id 1

If we look at show mls qos map cos-input-q and show mls qos dscp-input-q
we can see the maps that are used to define which queue the traffic ends up in.
We can of course set these values according to our needs.

 Rack18SW1#sh mls qos map cos-input-q

 Cos-inputq-threshold map:

 cos: 0 1 2 3 4 5 6 7

 queue-threshold: 1-1 1-1 1-1 1-1 1-1 2-1 1-1 1-1

Everything is by default mapped to queue 1 except for CoS 5 which is
mapped to queue 2. The general idea is to map VoIP to queue 2 and everything
else in queue 1. Lets look at the DSCP table as well.

Rack18SW1#sh mls qos map dscp-input-q

 Dscp-inputq-threshold map:

 d1 :d2 0 1 2 3 4 5 6 7 8 9

 --

 0 : 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01

 1 : 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01

 2 : 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01

 3 : 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01

 4 : 02-01 02-01 02-01 02-01 02-01 02-01 02-01 02-01 01-01 01-01

 5 : 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01

 6 : 01-01 01-01 01-01 01-01

To read this table start by reading from the left column and combining
that number with a number to a row on the right. Almost everything is mapped
to queue 1 except for DSCP 40-47 which is mapped to queue 2.

Up until now we have only discussed queues. The catalyst switch also uses
a congestion avoidance mechanism that is called Weighted Tail Drop (WTD).
The switch has three thresholds for every queue where the third threshold
is not configurable, it is always set to 100%
We can set the other two thresholds to values of our liking. Now we will
map CoS 6 to queue 2, threshold 3. We don’t want this traffic to get dropped unless
there is no other option.

Rack18SW1(config)#mls qos srr-queue input cos-map queue 2 threshold 3 ?

 8 cos values separated by spaces

Rack18SW1(config)#mls qos srr-queue input cos-map queue 2 threshold 3 6

Always confirm your result with the show mls qos map command.

Rack18SW1#sh mls qos map cos-input-q

 Cos-inputq-threshold map:

 cos: 0 1 2 3 4 5 6 7

 queue-threshold: 1-1 1-1 1-1 1-1 1-1 2-1 2-3 1-1

Now lets try to map DSCP EF to queue 1, threshold 3.

Rack18SW1(config)#mls qos srr-queue input dscp-map queue 1 threshold 3 ?

 dscp values separated by spaces (up to 8 values total)

Rack18SW1(config)#mls qos srr-queue input dscp-map queue 1 threshold 3 46

That covers the ingress queues. Note that all commands will affect all
ports on the switch, there is no way of setting port specific QoS settings for input queues.

Now lets look at our options for egress queues. We have four queues
where every queue has three thresholds. We start by looking at the default settings.

Rack18SW1#sh mls qos map cos-output-q

 Cos-outputq-threshold map:

 cos: 0 1 2 3 4 5 6 7

 queue-threshold: 2-1 2-1 3-1 3-1 4-1 1-1 4-1 4-1

Rack18SW1#sh mls qos map dscp-output-q

 Dscp-outputq-threshold map:

 d1 :d2 0 1 2 3 4 5 6 7 8 9

 --

 0 : 02-01 02-01 02-01 02-01 02-01 02-01 02-01 02-01 02-01 02-01

 1 : 02-01 02-01 02-01 02-01 02-01 02-01 03-01 03-01 03-01 03-01

 2 : 03-01 03-01 03-01 03-01 03-01 03-01 03-01 03-01 03-01 03-01

 3 : 03-01 03-01 04-01 04-01 04-01 04-01 04-01 04-01 04-01 04-01

 4 : 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01 04-01 04-01

 5 : 04-01 04-01 04-01 04-01 04-01 04-01 04-01 04-01 04-01 04-01

 6 : 04-01 04-01 04-01 04-01

The egress queueing is a bit more flexible. With the SRR algorithm we
can do some port specific bandwidth control. When it comes to egress queues
we can either shape or share a queue. A shaped queue is guaranteed an amount
of bandwidth but is also policed to that value. Even if there is no
congestion that queue still can’t use more bandwidth then it has been assigned.
The shaped value is calculated against the physical interface speed.
Look at the following command.

Rack18SW1(config-if)#srr-queue bandwidth shape 25 0 0 0

How much bandwidth did we just assign to queue 1? 25 Mbit?
We assigned 4 Mbit since (1/25)*100 = 4. When we set the other queues to 0
this means that they are operating in shared mode instead of shaped.
Now we configure the three other queues.

Rack18SW1(config-if)#srr-queue bandwidth share 33 33 33 33

How much does every queue get? Notice I put a 33 for queue 1 but
that will do nothing since it is operating in shaped mode. That leaves
us with the other three queues. To calculate their share we use
(33/33+33+33)*96 = 32 Mbit. So these values are just a weight
and we have to subtract the value from the shaped queue when calculating
how much the other queues get. When operating in shared mode if one
queue is not using all of its bandwidth the other queues may cut into this.
This is different compared to the shaped mode.

Assigning values to the egress queue depending on CoS or DSCP works
the same way as for ingress.

Rack18SW1(config)#mls qos srr-queue output cos-map queue 3 threshold 3 ?

 8 cos values separated by spaces

Rack18SW1(config)#mls qos srr-queue output cos-map queue 3 threshold 3 5

Rack18SW1(config)#mls qos srr-queue output dscp-map queue 2 threshold 3 ?

 dscp values separated by spaces (up to 8 values total)

Rack18SW1(config)#mls qos srr-queue output dscp-map queue 2 threshold 3 46

The egress queues also uses buffers. These can be tuned by configuring a
queue-set. By default all ports will use queue-set 1 with these settings.

Rack18SW1#show mls qos queue-set

Queueset: 1

Queue : 1 2 3 4

--

buffers : 25 25 25 25

threshold1: 100 200 100 100

threshold2: 100 200 100 100

reserved : 50 50 50 50

maximum : 400 400 400 400

We can configure one of our own queue-sets and tell a port to use this instead.

Rack18SW1(config)#mls qos queue-set output 2 buffers 10 10 40 40

We can also configure thresholds and how much of the buffers are reserved.

Rack18SW1(config)#mls qos queue-set output 2 threshold ?

 enter queue id in this queue set

Rack18SW1(config)#mls qos queue-set output 2 threshold 1 ?

 enter drop threshold1 1-3200

Rack18SW1(config)#mls qos queue-set output 2 threshold 1 50 ?

 enter drop threshold2 1-3200

Rack18SW1(config)#mls qos queue-set output 2 threshold 1 50 200 ?

 enter reserved threshold 1-100

Rack18SW1(config)#mls qos queue-set output 2 threshold 1 50 200 75 ?

 enter maximum threshold 1-3200

Rack18SW1(config)#mls qos queue-set output 2 threshold 1 50 200 75 300

Then we need to actually assign the queue-set to an interface.

Rack18SW1(config)#interface FastEthernet0/10

Rack18SW1(config-if)#queue-set 2

We can check our settings with show mls qos queue-set

Rack18SW1#sh mls qos queue-set 2

Queueset: 2

Queue : 1 2 3 4

--

buffers : 10 10 40 40

threshold1: 50 200 100 100

threshold2: 200 200 100 100

reserved : 75 50 50 50

maximum : 300 400 400 400

The buffer values can be a bit confusing. First we define how big a share
the queue gets of the buffers in percent. The thresholds will define when
traffic will be dropped. For queue 1 we start dropping traffic in threshold 1 at 50%
Then we drop traffic in threshold 2 at 200%
How can a queue get to 200%?! The secret here is that a queue can outgrow
the buffers we assign if there are buffers available in the common pool.
This is where the reserved values comes into play.
Every queue gets assigned buffers but we can define that only 50% of
these buffers are strictly reserved for the queue.
The other 50% goes into a common pool and can be used by the other queues as well.
We then set a maximum value for the queue which says that it can grow
up to 400% but no more than that.

Early in this post I talked about the priority queue for egress queues.
This how we enable it.

Rack18SW1(config)#int f0/10

Rack18SW1(config-if)#priority-queue out

This will always be queue 1 and is not configurable.

Now lets move on to some other things we can do with QoS. Lets assume that we
have a customer connecting to switch and internally they are using totally different
DSCP values than we want. We can use a DSCP mutation map for that.

Rack18SW1(config)#mls qos map dscp-mutation MUTATE 40 ?

 DSCP values separated by spaces (up to 8 values total)

 to to keyword

Rack18SW1(config)#mls qos map dscp-mutation MUTATE 40 to 46

Rack18SW1(config)#int f0/10

Rack18SW1(config-if)#mls qos trust dscp

Rack18SW1(config-if)#mls qos dscp-mutation MUTATE

So in this example we are mutating DSCP 40 (CS5) to DSCP 46 (EF).

We also have the option of using policy maps just like on routers.
And we can even police traffic. This policy-map will match all ICMP and police
it to 128k with a marking of EF, any exceeding traffic will be remarked
to DSCP 0.

Rack18SW1(config)#ip access-list extended ICMP

Rack18SW1(config-ext-nacl)#permit icmp any any

Rack18SW1(config-ext-nacl)#class-map CM_ICMP

Rack18SW1(config-cmap)#match access-group name ICMP

Rack18SW1(config-cmap)#policy-map POLICE

Rack18SW1(config-pmap)#class CM_ICMP

Rack18SW1(config-pmap-c)#police 128000 32000 ex

Rack18SW1(config-pmap-c)#police 128000 32000 exceed-action policed-dscp-transmit

Rack18SW1(config-pmap-c)#set dscp ef

Rack18SW1(config-pmap-c)#exit

Rack18SW1(config-pmap)#exit

Rack18SW1(config)#mls qos map policed-dscp 46 ?

 DSCP values separated by spaces (up to 8 values total)

 to to keyword

Rack18SW1(config)#mls qos map policed-dscp 46 to 0

Rack18SW1(config)#int f0/10

Rack18SW1(config-if)#service-policy input POLICE

If you are used to configuring MQC on routers then you will be surprised
to know that the show policy-map is not working for switches.
We need to use show mls qos int statistics instead.

Rack18SW1#sh mls qos int f0/10 statistics

FastEthernet0/10 (All statistics are in packets)

 dscp: incoming

 0 - 4 : 0 0 0 0 0

 5 - 9 : 0 0 0 0 0

 10 - 14 : 0 0 0 0 0

 15 - 19 : 0 0 0 0 0

 20 - 24 : 0 0 0 0 0

 25 - 29 : 0 0 0 0 0

 30 - 34 : 0 0 0 0 0

 35 - 39 : 0 0 0 0 0

 40 - 44 : 0 0 0 0 0

 45 - 49 : 0 0 0 0 0

 50 - 54 : 0 0 0 0 0

 55 - 59 : 0 0 0 0 0

 60 - 64 : 0 0 0 0

 dscp: outgoing

 0 - 4 : 0 0 0 0 0

 5 - 9 : 0 0 0 0 0

 10 - 14 : 0 0 0 0 0

 15 - 19 : 0 0 0 0 0

 20 - 24 : 0 0 0 0 0

 25 - 29 : 0 0 0 0 0

 30 - 34 : 0 0 0 0 0

 35 - 39 : 0 0 0 0 0

 40 - 44 : 0 0 0 0 0

 45 - 49 : 0 0 0 0 0

 50 - 54 : 0 0 0 0 0

 55 - 59 : 0 0 0 0 0

 60 - 64 : 0 0 0 0

 cos: incoming

 0 - 4 : 2 0 0 0 0

 5 - 7 : 0 0 0

 cos: outgoing

 0 - 4 : 0 0 0 0 0

 5 - 7 : 0 0 0

Policer: Inprofile: 0 OutofProfile: 0

This is a huge table showing how much traffic with different markings
are coming in and going out. At the very end you see the Policer which
shows how much is in profile and out of profile.

So that is one way of configuring policy-maps. When using the
catalyst switches they can use QoS in either VLAN based mode or port based mode.
If we use VLAN based mode we will apply the policy to a SVI instead.
This might be more scalable depending on your setup.
The caveat with using a policy-map on SVI is that you can’t police in the parent map.
You need a child map for that. Lets look at an example using a parent and child map.
Any IP traffic from trunks may use 256k (Fa0/13 – 21) and traffic from Fa0/6 will
be restricted to 56k. This will all be configured for VLAN 146.

Rack18SW1(config)#int range fa0/13 -21 , fa0/6

Rack18SW1(config-if)#mls qos vlan-based

Rack18SW1(config-if)#exit

Rack18SW1(config)#ip access-list extended IP_ANY

Rack18SW1(config-ext-nacl)#permit ip any any

Rack18SW1(config-ext-nacl)#class-map CM_IP_ANY

Rack18SW1(config-cmap)#match access-group name IP_ANY

Rack18SW1(config-cmap)#class-map CM_TRUNKS

Rack18SW1(config-cmap)#match input-interface fa0/13 - fa0/21

Rack18SW1(config-cmap)#class-map CM_R6

Rack18SW1(config-cmap)#match input-interface fa0/6

Rack18SW1(config-cmap)#policy-map CHILD

Rack18SW1(config-pmap)#class CM_TRUNKS

Rack18SW1(config-pmap-c)#police 256000 32000

Rack18SW1(config-pmap-c)#class CM_R6

Rack18SW1(config-pmap-c)#police 56000 28000

Rack18SW1(config-pmap-c)#policy-map PARENT

Rack18SW1(config-pmap)#class CM_IP_ANY

Rack18SW1(config-pmap-c)#service-policy CHILD

Rack18SW1(config-pmap-c)#set dscp cs1

Rack18SW1(config-pmap-c)#int vlan 146

Rack18SW1(config-if)#service-policy input PARENT

The final thing I want to show is how to use an aggregate policer.
We can use this if we want several classes to share a bandwidth instead
of setting bandwidth per class. Take a look at this.

Rack18SW1(config)#ip access-list extended ICMP

Rack18SW1(config-ext-nacl)#permit icmp any any

Rack18SW1(config-ext-nacl)#ip access-list extended HTTP

Rack18SW1(config-ext-nacl)#permit tcp any eq www any

Rack18SW1(config-ext-nacl)#permit tcp any any eq www

Rack18SW1(config-ext-nacl)#class-map CM_ICMP

Rack18SW1(config-cmap)#match access-group name ICMP

Rack18SW1(config-cmap)#class-map CM_HTTP

Rack18SW1(config-cmap)#match access-group name HTTP

Rack18SW1(config-cmap)#exit

Rack18SW1(config)#mls qos aggregate-policer AGG256k ?

 Bits per second (postfix k, m, g optional; decimal point

 allowed)

Rack18SW1(config)#mls qos aggregate-policer AGG256k 256000 ?

 Normal burst bytes

Rack18SW1(config)#mls qos aggregate-policer AGG256k 256000 32000 ?

 exceed-action action when rate is exceeded

Rack18SW1(config)#$regate-policer AGG256k 256000 32000 exceed-action drop

Rack18SW1(config)#policy-map AGG_POLICER

Rack18SW1(config-pmap)#class CM_ICMP

Rack18SW1(config-pmap-c)#police aggre

Rack18SW1(config-pmap-c)#police aggregate AGG256k

Rack18SW1(config-pmap-c)#class CM_HTTP

Rack18SW1(config-pmap-c)#police aggregate AGG256k

Rack18SW1(config-if)#int f0/2

Rack18SW1(config-if)#service-policy input AGG_POLICER

And before I leave you there is this final thing I want to show.
That is how to limit the egress traffic on an interface with the SRR command.
Let’s say that We have a 100 Mbit interface but customer only pays for 4 Mbit.
We can use this command.

Rack18SW1(config-if)#srr-queue bandwidth limit ?

 enter bandwidth limit for interface as percentage

The lowest we can set is 10 though. If we have a port running at
100 Mbit that will leave us with 10 Mbit. We can set the port to 10 Mbit
and configure this to 40% Then we will achieve the value that was requested.

