

Article ID: 4938

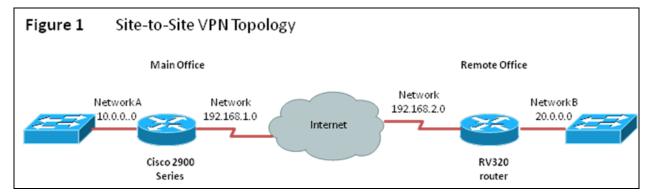
Configuring a Site-to-Site VPN Tunnel Between Cisco RV320 Gigabit Dual WAN VPN Router and Cisco (1900/2900/3900) Series Integrated Services Router

Objective

Virtual Private Networks (VPNs) ensure business continuity and provide the ability to extend the corporate workplace to employees who need continual access to company resources. A VPN exists as a private network constructed within a public network infrastructure, such as the global Internet. A VPN extends a private network between geographically separate office locations. It enables a host computer to send and receive data across public networks as if they were a part of the private network. Security concerns may arise because of private data sent and received across public networks, but hosts encrypt all data using the IP Security (IPsec) protocol before sending through a VPN to allow staff to work from different sites without compromising the network. VPNs also integrate network features such as routing, Quality of Service (QoS), and multicast support.

Different VPN topologies exist including hub-and-spoke, point-to-point, and full mesh. This Smart Tip covers site-to-site (point-to-point) VPN, which provides an Internet-based infrastructure to extend network resources to remote offices, home offices, and business partner sites.

Cisco RV320 Gigabit Dual WAN VPN Routers deliver robust and easily managed VPN solutions to cost-conscious small business companies. Cisco 2900 Series Integrated Services Routers (ISRs) provide services to meet the demands of today's medium-sized branches, support cloud-based services, and offer a wide array of common security features such as advanced application inspection and control, threat protection, and encryption architectures for enabling more scalable and manageable VPN networks with secure connectivity by Group Encrypted Transport VPN, Dynamic Multipoint VPN (DMVPN), or Enhanced Easy VPN.


This short guide provides an example design for building a site-to-site IPsec VPN tunnel between a Cisco RV320 Gigabit Dual WAN VPN Router and a Cisco 2900 Series ISR.

Applicable Devices

- Cisco RV320 Routers
- Cisco 1900/2900/3900 Series Integrated Services Routers (ISA2900)

Example Network Configuration

The following shows a sample implementation of site-to-site IPsec VPN tunnel using a Cisco RV320 Gigabit Dual WAN VPN Router and a Cisco 2900 Series ISR.

A site-to-site IPsec VPN tunnel is configured and established between the Cisco RV320 Gigabit Dual WAN VPN Router at the Remote Office and the Cisco 2900 Series ISR at the Main Office.

With this configuration, a host in Network B at the Remote Office and a host in Network A at the Main Office can communicate with each other securely over VPN.

Key Features

Internet Key Exchange (IKE)

Internet Key Exchange (IKE) is the protocol used to set up a security association (SA) in the IPsec protocol suite. IKE builds on the Oakley protocol, Internet Security Association, and Key Management Protocol (ISAKMP), and uses a Diffie–Hellman key exchange to set up a shared session secret, from which cryptographic keys are derived. A secure policy for every peer must be manually maintained.,/p>

Internet Protocol Security (IPSec)

Internet Protocol Security (IPsec) uses cryptographic security services to protect communications over Internet Protocol (IP) networks. IPsec supports network-level peer authentication, data origin authentication, data integrity, data confidentiality (encryption), and replay protection. IPSec involves many component technologies and encryption methods. Yet, IPSec's operation can be broken down into five main steps:

Step 1. Interesting traffic initiates the IPSec process. Traffic is deemed interesting when the IPSec security policy configured in the IPSec peers starts the IKE process.

Step 2. IKE phase 1. IKE authenticates IPSec peers and negotiates IKE SAs during this phase, setting up a secure channel for negotiating IPSec SAs in IKE phase 2.

Step 3. IKE phase 2. IKE negotiates IPSec SA parameters and sets up matching IPSec SAs in the peers.

Step 4. Data transfer. Data is transferred between IPSec peers based on the IPSec parameters and keys stored in the SA database.

Step 5. IPSec tunnel termination. IPSec SAs terminate through deletion or by timing out.

Pre-Configuration

Step 1. Connect an Ethernet cable between the RV320 and its DSL or cable modem, and connect an Ethernet cable between the ISR2900 and its cable or DSL modem.

Step 2. Configure basic configurations on both the RV320 and the ISR2900.

Step 3. Make sure to configure the network IP addresses at each site on different subnets. In this example, the Remote Office LAN is using 20.0.0.0 and the Main Office LAN is using 10.0.0.0.

Step 4. Make sure local PCs are able connect to their respective routers, and with other PCs on the same LAN.

Configuring the Site-to-Site IPsec VPN Tunnel for RV320 at the Remote Office

Step 1. Go to VPN > Gateway-to-Gateway (see Figure 2)

- a.) Enter a Tunnel Name, such as RemoteOffice.
- b.) Select Interface as WAN1.
- c.) Select Keying Mode as IKE with Preshared Key.
- d.) Input Local IP Address and Remote IP Address.

e.) Figure 2 RV320 Gigabit Dual WAN VPN Router Gateway-to-Gateway

cisco RV320 Gi	gabit Dual WAN VPN R	Router		
Getting Started System Summary	Gateway to Gateway			
▶ Setup	Add a New Tunnel			
► DHCP	Tunnel No.	2		
 System Management Port Management 	Tunnel Name:			
Firewall	Interface:	WAN1		
▼ VPN	Keying Mode:	IKE with Preshared key		
Summary Gateway to Gateway Client to Gateway	Enable:			
VPN Passthrough PPTP Server	Local Group Setup			
 Certificate Management 	Local Security Gateway Type:	IP Only		
▸ Log ▶ SSL VPN	IP Address:	0.0.0.0		
User Management	Local Security Group Type:	Subnet 🗸		
Wizard	IP Address:	192.168.1.0		
	Subnet Mask:	255.255.255.0		
	Remote Group Setup			
	Remote Security Gateway Type:	IP Only		
	IP Address 🗸 :			
	Remote Security Group Type:	Subnet 🗸		
	IP Address:			
© 2013 Cisco Systems, Inc. All Rights Reserved.				

Step 2. Set up IPSec Tunnel Settings (see Figure 3) a.) Select Encryption as 3DES.

b.) Select Authentication as SHA1.c.) Check Perfect Forward Secrecy.d.) Set up the Preshared Key (needs to be the same on both routers).

Figure 3 IPSec Setup (Phase 1 and 2)

IPSec Setup		
Phase 1 DH Group:	Group 1 - 768 🗸	
Phase 1 Encryption :	3DES 🗸	
Phase 1 Authentication:	SHA1 🗸	
Phase 1 SA Lifetime:	28800	sec (Range: 120-86400, Default: 28800)
Perfect Forward Secrecy:		
Phase 2 DH Group:	Group 5 - 1536 bit 🗸	
Phase 2 Encryption:	AES-256	
Phase 2 Authentication:	SHA1 🗸	
Phase 2 SA Lifetime:	3600	sec (Range: 120-28800, Default: 3600)
Minimum Preshared Key Complexity:	Enable	
Preshared Key:	Aa1234567890!@#\$%^&*()_+	
Preshared Key Strength Meter:		
Advanced +		

Note: Make sure the Preshared Key Strength Meter is to the maximum (green) to have a more secure connection.

Step 3. Set up Advanced Settings (see Figure 3)

a.) Check and set AH Hash Algorithm as SHA1.

b.) Check NetBIOS Broadcast.

c.) Check and set Dead Peer Detection Interval (default is 10 seconds, with a maximum of 999 seconds).

Figure 3 Advanced Settings

Advanced -		
Advanced		
Aggressive Mode		
Compress (Support IP Payload Compression Protocol(IPComp))		
Keep-Alive		
AH Hash Algorithm SHA1 v		
✓ NetBIOS Broadcast		
Multicast Passthrough		
NAT Traversal		
Dead Peer Detection Interval 10 sec (Range: 10-999, Default: 10)		
Extended Authentication		
O IPSec Host		
User Name:		
Password:		
O Edge Device Default - Local Database V Add/Edit		
Tunnel Backup		
Remote Backup IP Address: Name or IPv4 Address		
Local Interface: WAN1 🗸		
VPN Tunnel Backup Idle Time: 30 sec (Range: 30-999, Default: 30)		

Step 4. Click Save to complete the configuration.

Configuring the Site-to-Site IPsec VPN Tunnel for ISR2900 at the Main Office

Configuration Cisco 2900 Series (CLI)		
router(config)#crypto isakmp policy 1 → Enable the IKE policy configuration (config-isakmp)		
router(config-isakmp)#authentication pre-share → Specifies that a Pre-share key is used		
router(config)#crypto isakmp key < CISCO> address < IP address> → Specifies the key "CISCO" which		
it should identical at both peers		
router(config)#access-list 100 permit ip < IP address main office> <subnet mask=""><ip address<="" b=""></ip></subnet>		
remote office><subnet mask="">\rightarrow</subnet> This ACL specifies the traffic to be encrypted and sent across the		
VPN Tunnel. On the RV320 router must be use an ACL as well.		
router(config)#crypto ipsec transform-set < MYSET> esp-aes esp-sha-hmac → Defines transform set		
that in this case is MYSET. Sets the IPsec transform set "ESP-AES_ESP-SHA-HMAC"		
router(config)#crypto map < MYMAP 1> ipsec-isakmp → define which traffic should be sent to the		
IPsec peer		
router(config-crypto-map)#set transform-set < MYSET> → Setting the transform set		
router(config-crypto-map)#set peer $\langle IP address \rangle \rightarrow$ Setting the remote office host		
router(config-crypto-map)#match address $100 \rightarrow Matching$ with the ACL 100		
router(config)#crypto map MYMAP 1 ipsec-isakmp		
router(config-crypto-map)#set transform-set MYSET		
router(config-crypto-map)#set peer < <i>ip address>→</i> Setting the remote office host		
router(config-crypto-map)#match address $100 \rightarrow$ Matching with the ACL 100		
router(config)#interface <i>interface ID></i> \rightarrow configure the interface and matching with the crypto		
map		
router(config-if)#crypto map < MYMAP>→ Matching the crypto map to "MY MAP"		

Note: In the case of multiple subnets, you will need to configure Access Lists to allow traffic to flow between the networks through the VPN tunnel.

Verify VPN Status on the ISR2900 at the Main Office

router(config)#show crypto ipsec sa
interface: <interfaceid></interfaceid>
Crypto map tag: MYMAP, local addr 192.168.1.4
protected vrf: (none)
local ident (addr/mask/prot/port): (10.0.0.0/255.0.0.0/0/0)
remote ident (addr/mask/prot/port): (20.1.1.0/255.255.255.0/0/0)
current_peer 192.168.1.3 port 500
PERMIT, flags={origin_is_acl,}
#pkts encaps: 0, #pkts encrypt: 0, #pkts digest: 0
#pkts decaps: 0, #pkts decrypt: 0, #pkts verify: 0
#pkts compressed: 0, #pkts decompressed: 0
#pkts not compressed: 0, #pkts compr. failed: 0
#pkts not decompressed: 0, #pkts decompress failed: 0
#send errors 0, #recv errors 0

Note: Before verifying the VPN status, it helps to do a successful ping between the networks defined on the ACL, and then run this command to verify if the secure VPN connection was established.

© 2013 Cisco Systems, Inc. All rights reserved.